The Mre11/Rad50/NBN complex plays a central role in coordinating the cellular response to DNA double-strand breaks. The importance of Rad50 in that response is evident from the recent description of a patient with Rad50 deficiency characterized by chromosomal instability and defective ATM-dependent signaling. We report here that ATM (defective in ataxia-telangiectasia) phosphorylates Rad50 at a single site (Ser-635) that plays an important adaptor role in signaling for cell cycle control and DNA repair. Although a Rad50 phosphosite-specific mutant (S635G) supported normal activation of ATM in Rad50-deficient cells, it was defective in correcting DNA damage-induced signaling through the ATM-dependent substrate SMC1. This mutant also failed to correct radiosensitivity, DNA double-strand break repair, and an S-phase checkpoint defect in Rad50-deficient cells. This was not due to disruption of the Mre11/Rad50/NBN complex revealing for the first time that phosphorylation of Rad50 plays a key regulatory role as an adaptor for specific ATM-dependent downstream signaling through SMC1 for DNA repair and cell cycle checkpoint control in the maintenance of genome integrity.
Adenosine deaminase acting on RNA 1 (ADAR1) is the master RNA editor, catalyzing the deamination of adenosine to inosine. RNA editing is vital for preventing abnormal activation of cytosolic nucleic acid sensing pathways by self-double-stranded RNAs. Here we determine, by parallel analysis of RNA secondary structure sequencing (PARS-seq), the global RNA secondary structure changes in ADAR1 deficient cells. Surprisingly, ADAR1 silencing resulted in a lower global double-stranded to single-stranded RNA ratio, suggesting that A-to-I editing can stabilize a large subset of imperfect RNA duplexes. The duplexes destabilized by editing are composed of vastly complementary inverted Alus found in untranslated regions of genes performing vital biological processes, including housekeeping functions and type-I interferon responses. They are predominantly cytoplasmic and generally demonstrate higher ribosomal occupancy. Our findings imply that the editing effect on RNA secondary structure is context dependent and underline the intricate regulatory role of ADAR1 on global RNA secondary structure.
Gene-expression microarrays and RNA interferences (RNAi) are among the most prominent techniques in functional genomics. The combination of the two holds promise for systematic, large-scale dissection of transcriptional networks. Recent studies, however, raise the concern that nonspecific responses to small interfering RNAs (siRNAs) might obscure the consequences of silencing the gene of interest, throwing into question the ability of this experimental strategy to achieve precise network dissections.We used microarrays and RNAi to dissect a transcriptional network induced by DNA damage in a human cellular system. We recorded expression profiles with and without exposure of the cells to a radiomimetic drug that induces DNA double-strand breaks (DSBs). Profiles were measured in control cells and in cells knocked-down for the Rel-A subunit of NFkappaB and for p53, two pivotal stress-induced transcription factors, and for the protein kinase ATM, the major transducer of the cellular responses to DSBs. We observed that NFkappaB and p53 mediated most of the damage-induced gene activation; that they controlled the activation of largely disjoint sets of genes; and that ATM was required for the activation of both pathways. Applying computational promoter analysis, we demonstrated that the dissection of the network into ATM/NFkappaB and ATM/p53-mediated arms was highly accurate.Our results demonstrate that the combined experimental strategy of expression arrays and RNAi is indeed a powerful method for the dissection of complex transcriptional networks, and that computational promoter analysis can provide a strong complementary means for assessing the accuracy of this dissection.
Abstract Lymphocytes establish dynamic cell–cell interactions with the cells they scan. Previous studies show that upon cell contact, various membrane-associated proteins, such as Ras-family proteins, transfer from B to T and NK lymphocytes. Mutations in RAS genes that encode constitutively active, GTP-bound, oncoproteins are rather common in human cancers; for instance, melanoma. Cancer immunoediting has been postulated to contribute to the elimination of malignant melanoma. Thus, we asked whether Ras oncoproteins can transfer from melanoma to T cells, including tumor-infiltrating lymphocytes (TILs), and subsequently induce functional effects in the adopting T cells. To explore this issue, we genetically engineered an HLA-A2+ melanoma cell line, MEL526, to express GFP or GFP-tagged H-Ras mutants stably. In this study, we show by an in vitro coculture system that GFP-tagged H-Ras, but not GFP, transfers from MEL526 to T cells and localizes to the inner aspect of their plasma membrane. This cell-contact-dependent process was increased by TCR stimulation and did not require strict Ag specificity. Importantly, we found a positive correlation between the levels of the acquired constitutively active H-RasG12V and ERK1/2 phosphorylation within the adopting TILs. We also show a significant increase in IFN-γ production and cytotoxic activity in TILs that acquired H-RasG12V compared to TILs that acquired a different H-Ras mutant. In conclusion, our findings demonstrate a hitherto unknown phenomenon of intercellular transfer of Ras oncoproteins from melanoma to TILs that consequently augments their effector functions.