Paxillin acts as an adaptor protein in integrin signaling. We have shown that paxillin exists in a relatively large cytoplasmic pool, including perinuclear areas, in addition to focal complexes formed at the cell periphery and focal adhesions formed underneath the cell. Several ADP-ribosylation factor (ARF) GTPase-activating proteins (GAPs; ARFGAPs) have been shown to associate with paxillin. We report here that Git2-short/KIAA0148 exhibits properties of a paxillin-associated ARFGAP and appears to be colocalized with paxillin, primarily at perinuclear areas. A fraction of Git2-short was also localized to actin-rich structures at the cell periphery. Unlike paxillin, however, Git2-short did not accumulate at focal adhesions underneath the cell. Git2-short is a short isoform of Git2, which is highly homologous to p95PKL, another paxillin-binding protein, and showed a weaker binding affinity toward paxillin than that of Git2. The ARFGAP activities of Git2 and Git2-short have been previously demonstrated in vitro, and we provided evidence that at least one ARF isoform, ARF1, is an intracellular substrate for the GAP activity of Git2-short. We also showed that Git2-short could antagonize several known ARF1-mediated phenotypes: overexpression of Git2-short, but not its GAP-inactive mutant, caused the redistribution of Golgi protein beta-COP and reduced the amounts of paxillin-containing focal adhesions and actin stress fibers. Perinuclear localization of paxillin, which was sensitive to ARF inactivation, was also affected by Git2-short overexpression. On the other hand, paxillin localization to focal complexes at the cell periphery was unaffected or even augmented by Git2-short overexpression. Therefore, an ARFGAP protein weakly interacting with paxillin, Git2-short, exhibits pleiotropic functions involving the regulation of Golgi organization, actin cytoskeletal organization, and subcellular localization of paxillin, all of which need to be coordinately regulated during integrin-mediated cell adhesion and intracellular signaling.
Secondary cerebral edema regulation is of prognostic significance in hypoxic-ischemic encephalopathy (HIE), and aquaporin 4 (AQP4) plays an important role in the pathogenesis of cerebral edema. The traditional Japanese herbal medicine Goreisan relieves brain edema in adults; however, its effect and pharmacological mechanism in children are unknown. We investigated the effects of Goreisan on HIE-associated brain edema and AQP4 expression in a juvenile rat model, established by combined occlusion of middle cerebral and common carotid arteries. Magnetic resonance imaging showed that the lesion areas were significantly smaller in the Goreisan- (2 g/kg) treated group than in the nontreated (saline) group at 24 and 48 h postoperatively. AQP4 mRNA levels in the lesion and nonlesion sides were significantly suppressed in the Goreisan group compared with the nontreated group 36 h postoperatively. Western blotting revealed that levels of AQP4 protein were significantly decreased in the Goreisan group compared with the nontreated group in the lesion side 72 h postoperatively, but not at 12 or 36 h. After 14 days, the Goreisan group had a significantly better survival rate. These findings suggest that Goreisan suppresses brain edema in HIE and improves survival in juvenile rats, possibly via regulation of AQP4 expression and function.
Background/Objectives: Late epilepsy occurring in the late stage after glioblastoma (GBM) resection is suggested to be caused by increased extracellular glutamate (Glu). To elucidate the mechanism underlying postoperative late epilepsy, the present study aimed to investigate the expressions and relations of molecules related to Glu metabolism in tumor tissues from GBM patients and cultured glioma stem-like cells (GSCs). Methods: Expressions of CD44, xCT and excitatory amino acid transporter (EAAT) 2 and extracellular Glu concentration in GBM patients with and without epilepsy were examined and their relationships were analyzed. For the study using GSCs, expressions and relationships of the same molecules were analyzed and the effects of CD44 knock-down on xCT, EAAT2, and Glu were investigated. In addition, the effects of hypoxia on the expressions of these molecules were investigated. Results: Tumor tissues highly expressed CD44 and xCT in the periphery of GBM with epilepsy, whereas no significant difference in EAAT2 expression was seen between groups with and without epilepsy. Extracellular Glu concentration was higher in patients with epilepsy than those without epilepsy. GSCs displayed reciprocal expressions of CD44 and xCT. Concentrations of extracellular Glu coincided with the degree of xCT expression, and CD44 knock-down elevated xCT expression and extracellular Glu concentrations. Hypoxia of 1% O2 elevated expression of CD44, while 5% O2 increased xCT and extracellular Glu concentration. Conclusions: Late epilepsy after GBM resection was related to extracellular Glu concentrations that were regulated by reciprocal expression of CD44 and xCT, which were stimulated by differential hypoxia for each molecule.
Abstract Background The poor prognosis of glioblastoma multiforme (GBM) is primarily due to highly invasive and highly migratory glioma stem-like cells (GSCs) in tumors. Upon GBM recurrence or progression, the highly invasive phenotype of GSCs changes to a less-motile, proliferative phenotype, thus generating tumor mass. Elucidating the molecular mechanism underlying this phenotypic transition could lead to the identification of effective molecular targets for treating GBM. Methods We examined mRNA expression of hypoxia-inducible factor (HIF)-1α, HIF-2α, CD44, and osteopontin in GBM tissues and investigated the effect of hypoxia (1% O 2 : severe or 5% O 2 : moderate) on expression of these molecules using two lines of cultured GSCs. We also analyzed the effect of osteopontin on the invasiveness, migration, and proliferation of GSCs under hypoxic conditions. In addition, the effect of CD44 knockdown on tumor growth and survival were investigated in vitro and in vivo using a mouse xenograft model. Results Severe hypoxia upregulates CD44 expression via activation of HIF-1α, inducing GSCs to assume a highly invasive phenotype. In contrast, moderate hypoxia upregulates osteopontin expression via activation of HIF-2α. Osteopontin in turn binds to CD44, simultaneously inhibiting CD44-promoted GSC migration and invasion and stimulating GSC proliferation, resulting in GSCs assuming a less-invasive, highly proliferative phenotype. CD44 knockdown significantly inhibited GSC migration and invasion both in vitro and in vivo . However, although CD44 knockdown did not affect tumor growth in vitro , mouse brain tumors generated from GSCs with CD44 knockdown exhibited diminished invasiveness, and the mice survived significantly longer than control mice. In contrast, siRNA-mediated silencing of the osteopontin gene led to decreased GSC proliferation, but the osteopontin-mediated inhibition of high GSC migratory behavior and invasiveness was diminished. Conclusion The highly invasive phenotype of GSCs can be reversed by switching from severe to moderate hypoxia, leading to less-invasive and proliferative tumors. CD44 and osteopontin, which are expressed in a mutually exclusive manner under severe or moderate hypoxia, play a central role in regulating GSC invasion and proliferation by inducing a phenotypic transition, suggesting that these molecules could be effective targets for treating both primary and recurrent GBM.