The Fred Young Submillimeter Telescope (FYST), on Cerro Chajnantor in the Atacama desert of Chile, will conduct wide-field and small deep-field surveys of the sky with more than 100,000 detectors on the Prime-Cam instrument. Kinetic inductance detectors (KIDs) were chosen as the primary sensor technology for their high density focal plane packing. Additionally, they benefit from low cost, ease of fabrication, and simplified cryogenic readout, which are all beneficial for successful deployment at scale. The cryogenic multiplexing complexity is pulled out of the cryostat and is instead pushed into the digital signal processing of the room temperature electronics. Using the Xilinx Radio Frequency System on a Chip (RFSoC), a highly multiplexed KID readout was developed for the first light Prime-Cam and commissioning Mod-Cam instruments. We report on the performance of the RFSoC-based readout with multiple detector arrays in various cryogenic setups. Specifically we demonstrate detector noise limited performance of the RFSoC-based readout under the expected optical loading conditions.
The Simons Observatory (SO) is a ground-based cosmic microwave background (CMB) experiment sited on Cerro Toco in the Atacama Desert in Chile that promises to provide breakthrough discoveries in fundamental physics, cosmology, and astrophysics. Supported by the Simons Foundation, the Heising-Simons Foundation, and with contributions from collaborating institutions, SO will see first light in 2021 and start a five year survey in 2022. SO has 287 collaborators from 12 countries and 53 institutions, including 85 students and 90 postdocs. The SO experiment in its currently funded form (‘SO-Nominal’) consists of three 0.4 m Small Aperture Telescopes (SATs) and one 6 m Large Aperture Telescope (LAT). Optimized for minimizing systematic errors in polarization measurements at large angular scales, the SATs will perform a deep, degree-scale survey of 10% of the sky to search for the signature of primordial gravitational waves. The LAT will survey 40% of the sky with arc-minute resolution. These observations will measure (or limit) the sum of neutrino masses, search for light relics, measure the early behavior of Dark Energy, and refine our understanding of the intergalactic medium, clusters and the role of feedback in galaxy formation. With up to ten times the sensitivity and five times the angular resolution of the Planck satellite, and roughly an order of magnitude increase in mapping speed over currently operating (“Stage 3”) experiments, SO will measure the CMB temperature and polarization fluctuations to exquisite precision in six frequency bands from 27 to 280 GHz. SO will rapidly advance CMB science while informing the design of future observatories such as CMB-S4. Construction of SO-Nominal is fully funded, and operations and data analysis are funded for part of the planned five-year observations. We will seek federal funding to complete the observations and analysis of SO-Nominal, at the $25M level. The SO has a low risk and cost efficient upgrade path – the 6 m LAT can accommodate almost twice the baseline number of detectors and the SATs can be duplicated at low cost. We will seek funding at the $75M level for an expansion of the SO (‘SO-Enhanced’) that fills the remaining focal plane in the LAT, adds three SATs, and extends operations by five years, substantially improving our science return. By this time SO may be operating as part of the larger CMB-S4 project. This white paper summarizes and extends material presented in, which describes the science goals of SO-Nominal, and which describe the instrument design.
Significant advancements have been made in understanding the physics of transition-edge sensors (TESs) over the past decade. However, key questions remain, particularly a detailed understanding of the current-dependent resistance of these detectors when biased within their superconducting transition. We use scanning superconducting quantum interference device (SQUID) microscopy (SSM) to image the local diamagnetic response of aluminum-manganese alloy (Al-Mn) transition-edge sensors (TESs) near their critical temperature of approximately 175 mK. By doing so, we gain insights into how the device dimensions influence TES transition width, which in turn affects device operation and informs optimal device design. Our images reveal that the Al-Mn thin film near the niobium (Nb) leads exhibits an excess diamagnetic response at temperatures several milli-Kelvin (mK) higher than the bulk of the film farther from the contacts. A possible origin of this behavior is a longitudinal proximity effect between the Nb and Al-Mn where the TES acts as a weak link between superconducting leads. We discuss how this effect shapes the temperature dependence of the resistance as the spacing between the leads decreases. This work demonstrates that magnetic imaging with SSM is a powerful tool for local characterization of superconducting detectors.
The CCAT Collaboration's six-meter Fred Young Submillimeter Telescope is scheduled to begin observing in the Chilean Atacama in 2025, targeting a variety of science goals throughout cosmic history. Prime-Cam is a 1.8-meter diameter cryostat that will host up to seven independent instrument modules designed for simultaneous spectroscopic and broadband, polarimetric surveys at millimeter to submillimeter wavelengths. The first of these instrument modules, the 280 GHz module, will include ${\sim}$10,000 kinetic inductance detectors (KIDs) across three arrays. While the first array was fabricated out of tri-layer TiN/Ti/TiN, the other two arrays were fabricated out of a single layer of Al. This combination of materials within the same instrument provides a unique opportunity to directly compare the performance and noise properties of two different detector materials that are seeing increasing use within the field. We present preliminary comparisons here based on lab testing, along with a discussion of the potential impacts on operation when observing and translating raw data to science-grade maps.
The Cerro Chajnantor Atacama Telescope-prime (CCAT-prime) is a new 6-m, off-axis, low-emissivity, large field-of-view submillimeter telescope scheduled for first light in the last quarter of 2021. In summary, (a) CCAT-prime uniquely combines a large field-of-view (up to 8-deg), low emissivity telescope (< 2%) and excellent atmospheric transmission (5600-m site) to achieve unprecedented survey capability in the submillimeter. (b) Over five years, CCAT-prime first generation science will address the physics of star formation, galaxy evolution, and galaxy cluster formation; probe the re-ionization of the Universe; improve constraints on new particle species; and provide for improved removal of dust foregrounds to aid the search for primordial gravitational waves. (c) The Observatory is being built with non-federal funds (~ \$40M in private and international investments). Public funding is needed for instrumentation (~ \$8M) and operations (\$1-2M/yr). In return, the community will be able to participate in survey planning and gain access to curated data sets. (d) For second generation science, CCAT-prime will be uniquely positioned to contribute high-frequency capabilities to the next generation of CMB surveys in partnership with the CMB-S4 and/or the Simons Observatory projects or revolutionize wide-field, sub-millimetter line intensity mapping surveys.