Abstract Background Neonatal intrahepatic cholestasis caused by citrin deficiency (CD) is a rare inborn error of metabolism due to variants in the SLC25A13 gene encoding the calcium-binding protein citrin. Citrin is an aspartate-glutamate carrier located within the inner mitochondrial membrane. Case presentation We report on two siblings of Romanian-Vietnamese ancestry with citrin deficiency. Patient 1 is a female who presented at age 8 weeks with cholestasis, elevated lactate levels and recurrent severe hypoglycemia. Diagnosis was made by whole exome sequencing and revealed compound heterozygosity for the frameshift variant c.852_855del, p.Met285Profs*2 and a novel deletion c.(69 + 1_70–1)_(212 + 1_231–1)del in SLC25A13 . The girl responded well to dietary treatment with a lactose-free, MCT-enriched formula. Her younger brother (Patient 2) was born 1 year later and also found to be carrying the same gene variants. Dietary treatment from birth was able to completely prevent clinical manifestation until his current age of 4.5 months. Conclusions As CD is a well-treatable disorder it should be ruled out early in the differential diagnosis of neonatal cholestasis. Due to the combination of hepatopathy, lactic acidosis and recurrent hypoglycemia the clinical presentation of CD may resemble hepatic mitochondrial depletion syndrome.
Newborn screening (NBS) for hepatorenal tyrosinemia type I (HT1) based on a determination of succinylacetone is performed in countries worldwide. Recently, biallelic pathogenic variants in
Newborn screening (NBS) programs are effective measures of secondary prevention and have been successively extended. We aimed to evaluate NBS for methylmalonic acidurias, propionic acidemia, homocystinuria, remethylation disorders and neonatal vitamin B12 deficiency, and report on the identification of cofactor-responsive disease variants. This evaluation of the previously established combined multiple-tier NBS algorithm is part of the prospective pilot study "NGS2025" from August 2016 to September 2022. In 548,707 newborns, the combined algorithm was applied and led to positive NBS results in 458 of them. Overall, 166 newborns (prevalence 1: 3305) were confirmed (positive predictive value: 0.36); specifically, methylmalonic acidurias (N = 5), propionic acidemia (N = 4), remethylation disorders (N = 4), cystathionine beta-synthase (CBS) deficiency (N = 1) and neonatal vitamin B12 deficiency (N = 153). The majority of the identified newborns were asymptomatic at the time of the first NBS report (total: 161/166, inherited metabolic diseases: 9/14, vitamin B12 deficiency: 153/153). Three individuals were cofactor-responsive (methylmalonic acidurias: 2, CBS deficiency: 1), and could be treated by vitamin B12, vitamin B6 respectively, only. In conclusion, the combined NBS algorithm is technically feasible, allows the identification of attenuated and severe disease courses and can be considered to be evaluated for inclusion in national NBS panels.
Medium-chain acyl-CoA dehydrogenase deficiency (MCADD) is included in many newborn screening programmes worldwide. In addition to the prevalent mutation c.985A>G in the ACADM gene, potentially mild mutations like c.199T>C are frequently found in screening cohorts. There is ongoing discussion whether this mutation is associated with a clinical phenotype.In 37 MCADD patients detected by newborn screening, biochemical phenotype (octanoylcarnitine (C8), ratios of C8 to acetylcarnitine (C2), decanoylcarnitine (C10) and dodecanoylcarnitine (C12) at screening and confirmation) and clinical phenotype (inpatient emergency treatment, metabolic decompensations, clinical assessments, psychometric tests) were assessed in relation to genotype.16 patients were homozygous for c.985A>G (group 1), 11 compound heterozygous for c.199T>C and c.985A>G/another mutation (group 2) and 7 compound heterozygous for c.985A>G and mutations other than c.199T>C (group 3) and 3 carried neither c.985A>G nor c.199T>C but other known homozygous mutations (group 4). At screening C8/C2 and C8/C10, at confirmation C8/C2, C8/C10 and C8/C12 differed significantly between patients compound heterozygous for c.199T>C (group 2) and other genotypes. C8, C10 and C8/C2 at screening were strongly associated with time of sampling in groups 1 + 3 + 4, but not in group 2. Clinical phenotype did not differ between genotypes. Two patients compound heterozygous for c.199T>C and a severe mutation showed neonatal decompensation with hypoglycaemia.Biochemical phenotype differs between MCADD patients compound heterozygous for c.199T>C with a severe mutation and other genotypes. In patients detected by newborn screening, clinical phenotype does not differ between genotypes following uniform treatment recommendations. Neonatal decompensation can also occur in patients with the presumably mild mutation c.199T>C prior to diagnosis.
Abstract Newborn screening for cystic fibrosis (CF-NBS) was introduced in Germany in 2016. Currently, systematic follow-up of positive CF-NBS results is not implemented or reimbursed in the NBS program. We investigated results of confirmatory testing over 24 months after implementation of CF-NBS for a large German NBS center before and after introduction of an active tracking system and performed a cost calculation for tracking. Results are compared with the federal state of Bavaria, where a centralized tracking system has been in place for many years. At the NBS center, 244 of 281,907 children had a positive CF-NBS result requiring diagnostic confirmation. Before implementation of a telephone tracking system, only 43% of confirmatory results were returned despite repeated written requests. The consecutive strategy including telephone tracking led to an increase of resolved cases to 84%. However, the centralized tracking system in Bavaria, assigning children with positive CF-NBS directly to a responsible CF-center, resolved 99% of cases. The calculated additional cost for a tracking system in Germany including telephone tracking is 1.20€ per newborn screened. Conclusion : The implementation of a tracking system achieves a distinct improvement in CF-NBS with justifiable costs. The effect can be limited by absence of centralized organization of confirmatory testing. What is Known: • Newborn screening for cystic fibrosis (CF-NBS) has been performed for many years in several countries worldwide • While many studies have focused on different CF-NBS strategies, the organization of confirmatory testing and process quality concerning returned information to the NBS center has so far received less attention. What is New: • The implementation of an active tracking system achieves a distinct improvement of clarified cases after positive CF-NBS with justifiable costs. • The effect of a tracking system can be limited by the absence of a centralized organization of confirmatory testing.
Abstract Background Primary carnitine deficiency due to mutations in the OCTN2 gene is a rare but well-treatable metabolic disorder that puts patients at risk for metabolic decompensations, skeletal and cardiac myopathy and sudden cardiac death. Results We report on a 7-year-old boy diagnosed with primary carnitine deficiency 2 years after successful heart transplantation thanks his younger sister’s having been identified via expanded newborn screening during a pilot study evaluating an extension of the German newborn screening panel. Conclusion As L-carnitine supplementation can prevent and mostly reverse clinical symptoms of primary carnitine deficiency, all patients with cardiomyopathy should be investigated for primary carnitine deficiency even if newborn screening results were unremarkable.