Point-of-care testing (POCT) is defined as a clinical laboratory testing conducted close to the site of patient care. In addition to increased pressure for faster results, advanced technology offers diagnostic medical devices that make it possible to carry out some analysis close to the patient. In 2004, the Spanish Society of Clinical Biochemistry and Molecular Pathology detected an increasing number of laboratory professionals interested in POCT. This fact and the lack of guidelines for POCT in Spain encouraged the society's board of directors to create a workgroup comprising laboratory professionals and personnel of POCT diagnostic manufacturers to create the first Spanish guidelines for POCT. Based on scientific literature and professional experience, these guidelines were composed and published in 2006. The first part of the guide is a review of the definitions and classification of analytical systems emphasizing circumstances that validate POCT. The core of the document is a regulatory proposal for the implementation of these tests including aspects related to personnel responsibilities, multidisciplinary committees, quality assurance, training programs, data management, and future tendencies. The document concludes with 11 recommendations resuming the most important topics. These guidelines will be useful for implementing new points of care testing and reviewing the basis of current POCT practices. They can also establish the basics for different patient populations in a variety of clinical settings and assist administration, certification, or accreditation bodies. Primarily, the document strives to contribute to the improvement of patient care.
Introduction: Technological innovation requires the laboratories to ensure that modifications or incorporations of new techniques do not alter the quality of their results. In an ISO 15189 accredited laboratory, flexible scope accreditation facilitates the inclusion of these changes prior to accreditation body evaluation. A strategy to perform the validation of a biochemistry analyzer in an accredited laboratory having a flexible scope is shown.
To fight the virus SARS-CoV-2 spread to Europe from China and to give support to the collapsed public health system, the Spanish Health Authorities developed a field hospital located in the facilities of Madrid exhibition centre (IFEMA) to admit and treat patients diagnosed with SARS-CoV-2 infectious disease (COVID-19). The Department of Laboratory Medicine of La Paz University Hospital in Madrid (LMD-HULP) was designated to provide laboratory services. Due to the emergency, the IFEMA field hospital had to be prepared for patient admission in less than 1 week and the laboratory professionals had to collaborate in a multidisciplinary group to assure that resources were available to start on time. The LMD-HULP participated together with the managers in the design of the tests portfolio and the integration of the healthcare information systems (IS) (hospital IS, laboratory IS and POCT management system). Laboratorians developed a strategy to quickly train clinicians and nurses on test requests, sample collection procedures and management/handling of the POCT blood gas analyser both by written materials and training videos. The IFEMA´s preanalytical unit managed 3782 requests, and more than 11,000 samples from March 27th to April 30th. Furthermore, 1151 samples were measured by blood gas analysers. In conclusion, laboratory professionals must be resilient and have to respond timely in emergencies as this pandemic. The lab’s personnel selection, design and monitoring indicators to maintain and further improve the quality and value of laboratory services is crucial to support medical decision making and provide better patient care.
The measurement of ammonia is a standard request for patients hospitalised in critical care units and is of considerable usefulness in managing hepatic impairment for monitoring the onset of encephalopathy, particularly in paediatric units.1
However, its measurement presents difficulties for the laboratory due to preanalytical and analytical issues. There are multiple preanalytical issues that can cause false increases in ammonia in the sample due to deterioration phenomena related to protein catabolism. The sample's stability limit is 1 h, and the sample needs to be kept refrigerated and sealed throughout the process, including pre-centrifugation, to avoid external contamination and evaporation.2
The most extensively used laboratory methodology in laboratories is enzymatic determination (glutamate dehydrogenase (GLDH)). Interference from various factors has been reported, including products resulting from hepatic damage. Haemolysis also causes a false increase in ammonia, although it is not clear whether this increase is due to the release of intracellular content or to some other mechanism. It is therefore recommended that a sample blank be employed.3
In the laboratory, we perform the ammonia measurement in lithium-heparin plasma, using the enzymatic method (without a sample blank or reagent blank), which uses GLDH and a stabilised hydroxymethylglutaryl-CoA reductase (NADPH) analogue (Dimension Vista 1500, Siemens HD, Tarrytown, New York, USA). There has been a recent change in the formulation of the reagent, with a reduction in the limit of detection from 25 to 10 µmol/L.
New reagent has a microbial source of the enzyme (GLDH), …
Resumen Objetivos A pesar de que las guías clínicas aún no recomiendan el uso de glucómetros en el lugar de asistencia al paciente (POCT) con fines diagnósticos, la prestación analítica de estos dispositivos ha mejorado significativamente. En este contexto, evaluamos la precisión analítica y la concordancia diagnóstica de los glucómetros POCT durante la prueba de tolerancia oral a la glucosa (PTOG), para el diagnóstico de prediabetes y diabetes en un estudio comparativo. Métodos En este estudio prospectivo observacional, fueron reclutados pacientes pediátricos con indicación de PTOG, derivados a la Unidad de Diabetes entre diciembre de 2020 y septiembre de 2021. Durante la prueba funcional, se midió la glucemia en sangre venosa con dos glucómetros POCT (uno con conectividad y otro sin conectividad) y en el laboratorio central. Resultados El estudio incluyó 98 pacientes. Observamos una elevada correlación entre los glucómetros y el laboratorio (coeficiente de Pearson=0,912 para el glucómetro sin conectividad y 0,950 para el glucómetro con conectividad). El tiempo de respuesta de la PTOG disminuyó significativamente (mediana glucómetro con conectividad: 2,02 horas [rango intercuartílico: 2,00–2,07], laboratorio: 11,63 horas [6,09–25,80]), con un coste global similar. La concordancia diagnóstica entre el glucómetro con conectividad y el laboratorio fue del 71,1 % (IC 95 % 61,5–79,2). La decisión clínica hubiera sido la misma en el 92,8 % de los casos, aunque no se habría indicado tratamiento en cuatro pacientes (4,1 %). Conclusiones Durante las PTOG, los glucómetros POCT muestran una elevada correlación y una concordancia diagnóstica aceptable con el laboratorio, ofreciendo además el glucómetro con conectividad una reducción significativa del tiempo de respuesta, sin incrementar los costes. No obstante, dado que en algún caso podría haber un impacto clínico grave, los glucómetros POCT aún no deben ser utilizados con fines diagnósticos.
Resumen Objetivos La diabetes mellitus incrementa los riesgos y complicaciones asociadas a la COVID-19. Una de las principales consecuencias de la pandemia ha sido la drástica reducción de las consultas presenciales. El objetivo de este estudio es evaluar el impacto que ha tenido la pandemia de COVID-19 en la gestión de la determinación de HbA 1c y sus resultados en pacientes ambulatorios adultos y pediátricos con diabetes, teniendo en cuenta tanto la medición realizada en el laboratorio como las pruebas de laboratorio en el lugar de asistencia o point-of-care testing (POCT). Métodos Se realizó un estudio observacional retrospectivo que incluyó pacientes de las Unidades de Diabetes Pediátrica y de Adultos. A través del sistema de información del laboratorio, se extrajeron los resultados de HbA 1c obtenidos en el laboratorio y los resultados de POCT en un periodo de tres años (2019–2021). Resultados El número de mediciones de HbA 1c se redujo considerablemente tras el confinamiento. En poco tiempo, los pacientes pediátricos volvieron a recibir su asistencia médica habitual. El número de mediciones de HbA 1c fue aumentando paulatinamente en los adultos, especialmente POCT. En general, los valores de HbA 1c fueron inferiores en los pacientes pediátricos que en los adultos (p<0,001). Los valores de HbA 1c en niños (p<0,001) y adultos (p=0,002) se redujeron tras la pandemia con respecto al periodo previo a la misma, aunque fueron inferiores al valor de referencia del cambio de la HbA 1c . El porcentaje de resultados de HbA 1c superiores al 8% se mantuvo estable durante el periodo de estudio. Conclusiones Los sistemas de monitorización continua de la glucosa y la telemedicina fueron cruciales, habiéndose producido incluso una mejoría respecto a los niveles de HbA 1c . Durante el confinamiento, a los pacientes con mejor control metabólico, las pruebas analíticas se les realizaron en el laboratorio, mientras que a los pacientes con peor control o una situación clínica grave se les realizaron mediante POCT en las Unidades de Diabetes. En los pacientes adultos, el retorno a la asistencia habitual previa a la pandemia se produjo de forma lenta y gradual, ya que presentaban mayor riesgo de morbimortalidad asociado a la COVID-19. La coordinación entre todos los profesionales sanitarios fue esencial a la hora de garantizar la mejor atención posible, especialmente en escenarios complejos, como la pandemia de COVID-19.
Abstract The ongoing Ebola virus outbreak in several countries in West Africa was considered by the World Health Organisation (WHO) as a public health emergency of international concern. Healthcare providers must be prepared by organising specific procedures in our hospitals based on recommendations from national and international healthcare organisations. Two aims should be considered: appropriate medical care for patients with suspected or confirmed disease must be ensured, as must measures to prevent transmission to healthcare workers. The clinical laboratory plays an important role and must define and establish its own procedures in accordance with clinicians and integrated into those of the institution, starting with the definition of the organisation model in the laboratory to achieve those goals. In this review we present our experience based on the care of three patients with confirmed cases. We hope it will help other colleagues to plan for Ebola.
s: Critical and Point-of-Care Testing: Managing Technology for the Benefit of All Populations: 22nd International Symposium: September 17-20, 2008: Catalonia Barcelona Plaza Hotel|Barcelona, Spain
Point-of-care-testing (POCT) facilitates rapid availability of results that allows prompt clinical decision making. These results must be reliable and the whole process must not compromise its quality. Blood gas analyzers are one of the most used methods for POCT tests in Emergency Departments (ED) and in critical patients. Whole blood is the preferred sample, and we must be aware that hemolysis can occur. These devices cannot detect the presence of hemolysis in the sample, and because of the characteristics of the sample, we cannot visually detect it either. Hemolysis can alter the result of different parameters, including potassium with abnormal high results or masking low levels (hypokalemia) when reporting normal concentrations. Severe hyperkalemia is associated with the risk of potentially fatal cardiac arrhythmia and demands emergency clinical intervention. Hemolysis can be considered the most frequent cause of pseudohyperkalemia (spurious hyperkalemia) or pseudonormokalemia and can be accompanied by a wrong diagnosis and an ensuing inappropriate clinical decision making. A complete review of the potential causes of falsely elevated potassium concentrations in blood is presented in this article. POCT programs properly led and organized by the clinical laboratory can help to prevent errors and their impact on patient care.