A 15th century Russian icon from the Novgorod region was analyzed using both dendrochronological and radiocarbon methods [liquid scintillation counting (LSC) and accelerator mass spectrometry (AMS)]. This orthodox icon represents the Mother of God (Dexiokratusa). Fine art experts attribute the icon to between the late 14th to the early 15th centuries. The last complete tree ring was dated to AD 1409. There are indications that the trees were cut down during the summer of AD 1410. Taking into account the time for seasoning (about 8 months), the icon would have been painted in AD 1411. Wiggle-matching of the six AMS samples failed. Two of six AMS dates correspond to dendrochronological dates, while four of the six AMS dates showed differences with the dendrochronological dates by 5–39 yr. This discrepancy raises the issue of a possible regional offset from the calibration curve for the 13th century AD in NW Russia.
The relevance of the Arctic regions' study is rapidly increasing due to the sensitive response of fragile ecosystems to climate change and anthropogenic pressure. The microbiome is an important component that determines the soils' functioning and an indicator of changes occurring in ecosystems. Rybachy Peninsula is the northernmost part of the continental European Russia and is almost completely surrounded by Barents Sea water. For the first time, the microbial communities of the Entic Podzol, Albic Podzol, Rheic Histosol and Folic Histosol as well as anthropogenically disturbed soils (chemical pollution and human impact, growing crops) on the Rybachy Peninsula were characterized using plating and fluorescence microscopy methods, in parallel with the enzymatic activity of soils. The amount and structure of soil microbial biomass, such as the total biomass of fungi and prokaryote, the length and diameter of fungal and actinomycete mycelium, the proportion of spores and mycelium in the fungal biomass, the number of spores and prokaryotic cells, the proportion of small and large fungal spores and their morphology were determined. In the soils of the peninsula, the fungal biomass varied from 0.121 to 0.669 mg/g soil. The biomass of prokaryotes in soils ranged from 9.22 to 55.45 μg/g of soil. Fungi predominated, the proportion of which in the total microbial biomass varied from 78.5 to 97.7%. The number of culturable microfungi ranged from 0.53 to 13.93 × 103 CFU/g in the topsoil horizons, with a maximum in Entic Podzol and Albic Podzol soils and a minimum in anthropogenically disturbed soil. The number of culturable copiotrophic bacteria varied from 41.8 × 103 cells/g in a cryogenic spot to 5551.3 × 103 cells /g in anthropogenically disturbed soils. The number of culturable oligotrophic bacteria ranged from 77.9 to 12,059.6 × 103 cells/g. Changes in natural soils because of anthropogenic impact and a change in vegetation types have led to a change in the structure of the community of soil microorganisms. Investigated tundra soils had high enzymatic activity in native and anthropogenic conditions. The β-glucosidase and urease activity were comparable or even higher than in the soils of more southern natural zone, and the activity of dehydrogenase was 2-5 times lower. Thus, despite the subarctic climatic conditions, local soils have a significant biological activity upon which the productivity of ecosystems largely depends. The soils of the Rybachy Peninsula have a powerful enzyme pool due to the high adaptive potential of soil microorganisms to the extreme conditions of the Arctic, which allows them to perform their functions even under conditions of anthropogenic interference.
Despite the abundance of charcoal material entrapped in soils, they remain relatively less studied pyrogenic archives in comparison to the sedimentary paleofire records (e.g., lacustrine and peat deposits), and that is especially the case in most of Russia’s territory. We report here on the deep soil archives of the Holocene forest fires from the Pinega District of the Arkhangelsk region (64.747° N, 43.387° E). Series of buried soil profiles separated by charcoal layers and clusters were revealed in specific geomorphological traps represented by the active and paleokarst subsidence sinkholes on sulfate rocks overlaid by glacial and fluvial deposits. We combine the study of soil morphology and stratigraphy with a set of radiocarbon data on charcoal and soil organic matter, as well as the anthracomass analysis, to extract a set of paleoenvironmental data. A total of 45 radiocarbon dates were obtained for the macrocharcoal material and the soil organic matter. The maximum temporal “depth” of archives estimated from the radiocarbon dating of macrocharcoal reached 10,260 ± 35 cal yr BP. Soil formation with Podzols established at the inter-pyrogenic stages repeatedly reproduced within the period of ten thousand years, while the dominant tree species was Pinus sp. According to the macrocharcoal data, the intervals between fires have shortened in the last thousand years. Dendrochronological estimates suggest the occurrence of fires in almost every decade of the 20th and early 21st centuries. This is the first study of the millennia-scale soil record of forest fires in this particular region of Russia.