To study the risk and control countermeasures of the TBM tunnel construction adjacent to the operational railway tunnel, based on the TBM tunnel project of Chongqing Rail Transit Line 5, this paper first evaluates the quality health degree of the operational tunnel lining (OTL) structure according to the on-site structural inspection. Then, the displacement, internal force, and proximity influence scope influenced by the metro TBM tunnel construction are studied using numerical simulation. Finally, the corresponding control countermeasures are proposed. The results show that: (1) The adjacent construction of the upper TBM tunnel will lead to the uplift deformation trend of the lower operational tunnel, and the uplift deformation of the vault is greater than that of the ballast bed. The influence scope is roughly a parallelogram, with the long axis parallel to the operational tunnel and the short axis parallel to the new TBM subway tunnel. (2) TBM tunnelling over the operational tunnel will cause the transformation of the mechanical mode of the OTL structure from the small eccentric compression mode to the large eccentric compression mode. The OTL structure between the left and right lines of TBM is unfavorable. (3) The longitudinal curve of the bending moment and axial force of the OTL fluctuates greatly within the influence range. The bending moment and axial force are reduced in operational tunnel construction joints. Based on field evaluation and numerical analysis, this paper puts forward some risk control countermeasures, such as TBM tunnelling parameters control, pea-gravel backfilling, backfill grouting, and bottom grouting, which can effectively solve the risk of the operational tunnel structure in the adjacent construction. This study has important reference value for risk control and safety assessment of tunnel in complex adjacent tunnel construction.
This study introduces a block triple-relaxation-time (B-TriRT) lattice Boltzmann model designed specifically for simulating melting phenomena within a rectangular cavity subject to intense heating from below, characterized by high Rayleigh (Ra) numbers (Ra=108). Through benchmark testing, it is demonstrated that the proposed B-TriRT approach markedly mitigates numerical diffusion along the phase interface. Furthermore, an examination of the heated region’s placement is conducted, revealing its significant impact on the rate of melting. Notably, findings suggest that optimal melting occurs most rapidly when the heated region is positioned centrally within the cavity.
The powder diameter affects the heat generation and further influences the quality of weldments when the MZA powder is used as laser-absorbents to carry out laser transmission welding (LTW). It is difficult to measure the temperature due to its extremely short duration. A mathematical model considering the multiple reflections of metal powder is established to predict heat generation. The mathematical model is verified and then used to describe the influence of line energy density and powder diameter on the temperature profile of the LTW process. The results demonstrate that the temperature from experiments and simulation are consistent. Therefore, the established model is suitable to predict the heat generation of metal powder laser-absorbents in the LTW process.
To improve the quality of laser-induced breakdown spectroscopy, flat-mirror device was proposed. The effects of flat-mirror device on the radiation characteristics of laser-induced plasma were studied. The experimental results showed that when the device consisted of three flat-mirrors placed around the plasma, the spectral line intensity of Mg, Fe, Ba, Ti and Al increases by about 116.2%, 96.43%, 90.93%, 102.1% and 98.57% than that without flat-mirror device, and the signal-to-noise raises by around 39.17%, 32.48%, 38.07%, 39.95% and 21.30%,respectively. By measuring the plasma parameters, the mechanism of the radiation enhancement obtained with the device consisting of three flat-mirrors was explained. This method was an effective way to improve the detection capacity of LIBS.
Time-delayed feedback control is one of the important active control methods for complex dynamical behaviors in nonlinear systems. Yet its relationship and effectiveness on multiple time scale dynamics need to be further explored. As a purpose to gain insight into such complexity, we investigate the effectiveness of amplitude modulation in controlling (suppressing or enhancing) bursting oscillations in a classical mechanical oscillator with time-delayed feedback. It is shown how the presence of delay can change the amplitude of the singular cycle oscillations, or suppress them altogether. The results are compared to the conventional periodic perturbation method. In many cases, the amplitudes of periodic solutions under delayed feedback are easier to satisfy the technical requirements. If the delayed feedback is added, stable periodic bursting can be easily accomplished. Therefore, we demonstrate that an effective vibration modulation for bursting dynamics is possible if appropriate time delay and feedback gains are chosen.