The prevalence of metabolic syndrome, as defined by the International Diabetes Federation, was compared in two rural populations with hypertension in China. A total of 6326 subjects aged ≤ 35 years were included: 5043 Han and 1283 Mongolian. Metabolic syndrome was identified in 33.9% (men: 16.1%; women: 47.8%) of the Han and 37.6% (men: 14.7%; women: 55.0%) of the Mongolian populations. In men, prevalence of metabolic syndrome showed no obvious ethnicity differences; however, in women, prevalence was significantly higher in the Mongolian than in the Han population. This study showed high prevalence and ethnic differences in prevalence of metabolic syndrome in these two Chinese hypertensive populations.
As an important primary metabolite, malate plays a key role in regulating osmotic pressure, pH homeostasis, stress tolerance, and fruit quality of apple. The R2R3-MYB transcription factor (TF) MdMYB73 was identified as a protein that plays a critical role in determining malate accumulation and vacuolar acidification by directly regulating the transcription of aluminum-activated malate transporter 9 (MdALMT9), vacuolar ATPase subunit A (MdVHA-A), and vacuolar pyrophosphatase 1 (MdVHP1) in apple. In addition, the bHLH TF MdCIbHLH1 interacts with MdMYB73 and enhances the transcriptional activity of MdMYB73. Our previous studies demonstrated that the BTB-BACK-TAZ domain protein MdBT2 can degrade MdCIbHLH1 to influence malate accumulation and vacuolar acidification. However, the potential upstream regulators of MdMYB73 are currently unknown. In this study, we found that MdBT2 directly interacts with and degrades MdMYB73 through the ubiquitin/26S proteasome pathway to regulate malate accumulation and vacuolar acidification. A series of functional assays with apple calli and fruit showed that MdBT2 controls malate accumulation and vacuolar acidification in an MdMYB73-dependent manner. Overall, our findings shed light on the mechanism by which the BTB-BACK-TAZ domain protein MdBT2 regulates malate accumulation and vacuolar acidification by targeting MdMYB73 and MdCIbHLH1 for ubiquitination in apple. This information may help guide traditional breeding programs and fruit tree molecular breeding, and lead to improvements in fruit quality and stress tolerance.
Softening in fruit adversely impacts their edible quality and commercial value, leading to substantial economic losses during fruit ripening, long-term storage, long-distance transportation, and marketing. As the apple fruit demonstrates climacteric respiration, its firmness decreases with increasing ethylene release rate during fruit ripening and postharvest storage. However, the molecular mechanisms underlying ethylene-mediated regulation of fruit softening in apple remain poorly understood. In this study, we identified a WRKY transcription factor (TF) MdWRKY31, which is repressed by ethylene treatment. Using transgenic approaches, we found that overexpression of MdWRKY31 delays softening by negatively regulating xyloglucan endotransglucosylase/hydrolases 2 (MdXTH2) expression. Yeast one-hybrid (Y1H), electrophoretic mobility shift (EMSA), and dual-luciferase assays further suggested that MdWRKY31 directly binds to the MdXTH2 promoter via a W-box element and represses its transcription. Transient overexpression of ethylene-induced MdNAC7, a NAC TF, in apple fruit promoted softening by decreasing cellulose content and increasing water-soluble pectin content in fruit. MdNAC7 interacted with MdWRKY31 to form a protein complex, and their interaction decreased the transcriptional repression of MdWRKY31 on MdXTH2. Furthermore, MdNAC7 does not directly regulate MdXTH2 expression, but the protein complex formed with MdWRKY31 hinders MdWRKY31 from binding to the promoter of MdXTH2. Our findings underscore the significance of the regulatory complex NAC7-WRKY31 in ethylene-responsive signalling, connecting the ethylene signal to XTH2 expression to promote fruit softening. This sheds light on the intricate mechanisms governing apple fruit firmness and opens avenues for enhancing fruit quality and reducing economic losses associated with softening.
Abstract Background MADS-box transcription factors (TFs) are the key regulators of multiple developmental processes in plants; among them, a chrysanthemum MADS-box TF CmANR1 has been isolated and described as functioning in root development in response to high nitrate concentration signals. However, how CmANR1 affects root and shoot development remains unclear. Results We report that CmANR1 plays a positive role in root system development in chrysanthemum throughout the developmental stages of in vitro tissue cultures. Metabolomics combined with transcriptomics assays show that CmANR1 promotes robust root system development by facilitating nitrate assimilation, and influencing the metabolic pathways of amino acid, glycolysis, and the tricarboxylic acid cycle (TCA) cycle. Also, we found that the expression levels of TFs associated with the nitrate signaling pathways, such as AGL8 , AGL21 , and LBD29 , are significantly up-regulated in CmANR1 -transgenic plants relative to the wild-type (WT) control; by contrast, the expression levels of RHD3-LIKE , LBD37 , and GATA23 were significantly down-regulated. These results suggest that these nitrate signaling associated TFs are involved in CmANR1 -modulated control of root development. In addition, CmANR1 also acts as a positive regulator to control shoot growth and development. Conclusions These findings provide potential mechanisms of MADS-box TF CmANR1 modulation of root and shoot development, which occurs by regulating a series of nitrate signaling associated TFs, and influencing the metabolic pathways of amino acid and glycolysis, as well as TCA cycle and nitrate assimilation.
Sugars play important roles in plant growth and development, crop yield and quality, as well as responses to abiotic stresses. Abscisic acid (ABA) is a multifunctional hormone. However, the exact mechanism by which ABA regulates sugar accumulation is largely unknown in plants. Here, we tested the expression profile of several sugar transporter and amylase genes in response to ABA treatment. MdSUT2 and MdAREB2 were isolated and genetically transformed into apple (Malus domestica) to investigate their roles in ABA-induced sugar accumulation. The MdAREB2 transcription factor was found to bind to the promoters of the sugar transporter and amylase genes and activate their expression. Both MdAREB2 and MdSUT2 transgenic plants produced more soluble sugars than controls. Furthermore, MdAREB2 promoted the accumulation of sucrose and soluble sugars in an MdSUT2-dependent manner. Our results demonstrate that the ABA-responsive transcription factor MdAREB2 directly activates the expression of amylase and sugar transporter genes to promote soluble sugar accumulation, suggesting a mechanism by which ABA regulates sugar accumulation in plants.