The correlation of HIV-specific antibody-dependent cellular cytotoxicity (ADCC) responses with protection from and delayed progression of HIV-1 infection provides a rationale to leverage ADCC-mediating antibodies for treatment purposes. We evaluated ADCC mediated by different combinations of 2 to 6 neutralizing and non-neutralizing anti–HIV-1 Envelope (Env) mAbs, using concentrations ≤ 1 μg/mL, to identify combinations effective at targeting latent reservoir HIV-1 viruses from 10 individuals. We found that within 2 hours, combinations of 3 mAbs mediated more than 30% killing of HIV-infected primary CD4+ T cells in the presence of autologous NK cells, with the combination of A32 (C1C2), DH511.2K3 (MPER), and PGT121 (V3) mAbs being the most effective. Increasing the incubation of target and effector cells in the presence of mAb combinations from 2 to 24 hours resulted in increased specific killing of infected cells, even with neutralization-resistant viruses. The same combination eliminated reactivated latently HIV-1–infected cells in an ex vivo quantitative viral outgrowth assay. Therefore, administration of a combination of 3 mAbs should be considered in planning in vivo studies seeking to eliminate persistently HIV-1–infected cells.
Since the beginning of the SARS-CoV-2 pandemic, antibody responses and antibody effector functions targeting SARS-CoV-2-infected cells have been understudied. Consequently, the role of these types of antibodies in SARS-CoV-2 disease (COVID-19) and immunity is still undetermined. To provide tools to study these responses, we used plasma from SARS-CoV-2-infected individuals (n = 50) and SARS-CoV-2 naive healthy controls (n = 20) to develop four specific and reproducible flow cytometry-based assays: (i) two assessing antibody binding to, and antibody-mediated NK cell degranulation against, SARS-CoV-2-infected cells and (ii) two assessing antibody binding to, and antibody-mediated NK cell degranulation against, SARS-CoV-2 Spike-transfected cells. All four assays demonstrated the ability to detect the presence of these functional antibody responses in a specific and reproducible manner. Interestingly, we found weak to moderate correlations between the four assays (Spearman rho ranged from 0.50 to 0.74), suggesting limited overlap in the responses captured by the individual assays. Lastly, while we initially developed each assay with multiple dilutions in an effort to capture the full relationship between antibody titers and assay outcome, we explored the relationship between fewer antibody dilutions and the full dilution series for each assay to reduce assay costs and improve assay efficiency. We found high correlations between the full dilution series and fewer or single dilutions of plasma. Use of single or fewer sample dilutions to accurately determine the response rates and magnitudes of the responses allows for high-throughput use of these assays platforms to facilitate assessment of antibody responses elicited by SARS-CoV-2 infection and vaccination in large clinical studies.
Early initiation of antiretroviral therapy (ART) in acute HIV infection (AHI) is effective at limiting seeding of the HIV viral reservoir, but little is known about how the resultant decreased antigen load affects long-term Ab development after ART. We report here that Env-specific plasma antibody (Ab) levels and Ab-dependent cellular cytotoxicity (ADCC) increased during the first 24 weeks of ART and correlated with Ab levels persisting after 48 weeks of ART. Participants treated in AHI stage 1 had lower Env-specific Ab levels and ADCC activity on ART than did those treated later. Importantly, participants who initiated ART after peak viremia in AHI developed elevated cross-clade ADCC responses that were detectable 1 year after ART initiation, even though clinically undetectable viremia was reached by 24 weeks. These data suggest that there is more germinal center (GC) activity in the later stages of AHI and that Ab development continues in the absence of detectable viremia during the first year of suppressive ART. The development of therapeutic interventions that can enhance earlier development of GCs in AHI and Abs after ART initiation could provide important protection against the viral reservoir that is seeded in individuals treated early in the disease.
Abstract Diverse and rapidly mutating viruses pose challenges to immunogen and vaccine design. In this study, we evaluated the ability of memory B-cells obtained from two independent NHP trials to cross-react with individual HIV-1 vaccine components of two different multivalent immunization strategies. We demonstrated that while an HIV-1 Env multiclade, multivalent immunization regimen resulted in a dominant memory B-cell response that converged toward shared epitopes, in a sequential immunization with clonally-related non-stabilized gp140 HIV-1 Envs followed by SOSIP-stabilized gp140 trimers, the change in immunogen format resulted in repriming of the B-cell response.
Mother-to-child transmission of HIV-1 remains a major global health challenge. Currently, HIV-1-infected infants require strict lifelong adherence to antiretroviral therapy to prevent replication of virus from reservoirs of infected cells, and to halt progression of disease. There is a critical need for immune interventions that can be deployed shortly after infection to eliminate HIV-1-infected cells in order to promote long-term remission of viremia, or to potentially cure pediatric HIV-1-infection. Bispecific HIV × CD3 DART® molecules able to co-engage the HIV-1 envelope protein on the surface of infected cells and CD3 on cytolytic T cells have been previously shown to eliminate HIV-1 infected cells in vitro and are candidates for passive immunotherapy to reduce the virus reservoir. However, their potential utility as therapy for infant HIV-1 infection is unclear as the ability of these novel antibody-based molecules to work in concert with cells of the infant immune system had not been assessed. Here, we use human umbilical cord blood as a model of the naïve neonatal immune system to evaluate the ability of HIV x CD3 DART molecules to recruit and redirect neonatal effector cells for elimination of autologous CD4+ T cells infected with HIV-1 encoding an envelope gene sequenced from a mother-to-child transmission event. We found that HIV × CD3 DART molecules can redirect T cells present in cord blood for elimination of HIV-infected CD4+ T cells. However, we observed reduced killing by T cells isolated from cord blood when compared to cells isolated from adult peripheral blood-likely due to the absence of the memory and effector CD8+ T cells that are most cytolytic when redirected by bispecific DART molecules. We also found that newly developed HIV × CD16 DART molecules were able to recruit CD16-expressing natural killer cells from cord blood to eliminate HIV-infected cells, and the activity of cord blood natural killer cells could be substantially increased by priming with IL-15. Our results support continued development of HIV-specific DART molecules using relevant preclinical animal models to optimize strategies for effective use of this immune therapy to reduce HIV-1 infection in pediatric populations.
Indoleamine 2,3-dioxygenase 1 (IDO1) is a potently immunosuppressive protein that inhibits antitumor immunity through both tryptophan metabolism and non-enzymatic functions. Pharmacological therapies targeting IDO1 enzyme activity have generally failed to improve the overall survival of patients with cancer. Developing new therapeutic agents that are capable of neutralizing both enzyme-and non-enzyme-derived immunosuppressive IDO1 effects is therefore of high interest. We previously described the development of a novel Proteolysis Targeting Chimera (PROTAC), NU223612, that degrades IDO1 in cultured human glioblastoma (GBM) cells, as well as in well-established brain tumors, in vivo . In this study, we rationally optimized the composition, rigidity, and linker orientation of the PROTAC structure to create NU227326, which degrades IDO1 with a DC 50 of 5 nM in human GBM cells. Mechanistic studies showed that IDO1 degradation occurred through the ubiquitin-proteasome system and was sustained for at least 2 days, supporting NU227326 as a highly potent IDO1 PROTAC suitable for further studies in GBM and other human cancers.
Background: The RV144 trial in Thailand is the only HIV-1 vaccine efficacy trial to date to demonstrate any efficacy. Genetic signatures suggested that antibodies targeting the variable loop 2 (V2) of the HIV-1 envelope played an important protective role. The ALVAC prime and protein boost follow-up trial in southern Africa (HVTN702) failed to show any efficacy. One hypothesis for this is the greater diversity of subtype C viruses in southern Africa relative to CRF01_AE in Thailand. Methods: Here, we determined whether an ALVAC prime with computationally selected gp120 boost immunogens maximizing coverage of diversity of subtype C viruses in the variable V1 and V2 regions (V1V2) improved the protection of non-human primates (NHPs) from a heterologous subtype C SHIV challenge compared to more traditional regimens. Results: An ALVAC prime with Trivalent subtype C gp120 boosts resulted in statistically significant protection from repeated intrarectal SHIV challenges compared to the control. Evaluation of the immunogenicity of each vaccine regimen at the time of challenge demonstrated that different gp120 combination boosts elicited similar high magnitudes of gp120 and breadth of V1V2-binding antibodies, as well as strong Fc-mediated immune responses. Low-to-no neutralization of the challenge virus was detected. A Cox proportional hazard analysis of five pre-selected immune parameters at the time of challenge identified ADCC against the challenge envelope as a correlate of protection. Systems serology analysis revealed that immune responses elicited by the different vaccine regimens were distinct and identified further correlates of resistance to infection. Conclusions: Computationally designed vaccines with maximized subtype C V1V2 coverage mediated protection of NHPs from a heterologous Tier-2 subtype C SHIV challenge.