Microbial inoculants are an important tool for increasing arable land productivity and decreasing mineral fertilizer application. This study was aimed at isolating and identifying endophytic antagonistic bacteria from lily (Lilium davidii var. unicolor) roots grown in Northwestern China and at evaluating their antifungal activity and plant growth-promoting characteristics. For this purpose, endophytic bacteria were isolated from plant roots, and plant growth-promoting strains were identified. One bacterial strain, isolated from the root part, was identified as Bacillus halotolerans based on 16S rRNA gene sequence analysis and was designated as LBG-1-13. The strain showed antagonistic activities against important plant pathogens of lily including Botrytis cinerea, Botryosphaeria dothidea, and Fusarium oxysporum. The highest percentage of growth inhibition, i.e., 71.65 ± 2.39%, was observed for LBG-1-13 against Botryosphaeria dothidea followed by 68.33 ± 4.70% and 48.22 ± 4.11% against Botrytis cinerea and Fusarium oxysporum, respectively. Meanwhile, the isolated strain also showed plant growth-promoting traits such as the production of indole-3-acetic acid (IAA), siderophore, ACC deaminase, and phosphate solubilization activity. The strain showed ACC deaminase activity and was able to cleave 58.41 ± 2.62 nmol α-ketobutyrate (mg protein)-1 min-1. The strain exhibited tolerance to salt and drought stress in an in vitro experiment. The strain LBG-1-13 was able to grow in the presence of 10% NaCl and 20% polyethylene glycol (PEG) in the growth medium. Inoculation of Lilium varieties, Tresor and Bright Diamond, with LBG-1-13 enhanced plant growth under greenhouse and field conditions, respectively. All these results demonstrated that Bacillus halotolerans LBG-1-13 could be utilized as a good candidate in the biocontrol of lily disease and plant growth promotion in sustainable agriculture.
<p> </p> <p>The advanced cessation of lactation elevates the risk of programmed obesity and obesity-related metabolic disorders in adulthood. The study used multi-omics analysis to investigate the mechanism behind this phenomenon and the effects of leucine supplementation on ameliorating programmed obesity development. Wistar/SD rat offspring were subjected to early weaning (EW) at d 17 (EWWIS and EWSD groups) or normal weaning at d 21 (CWIS and CSD groups). Half rats from the EWSD group were selected to create a new group with two-month leucine supplementation at d 150. The results showed that EW impaired lipid metabolic gene expressions and increased insulin, neuropeptide Y, and feed intake, inducing obesity in adulthood. Six lipid metabolism-related genes (<em>Acot1</em>, <em>Acot2</em>, <em>Acot4</em>, <em>Scd</em>, <em>Abcg8</em>, and <em>Cyp8b1</em>) were influenced by EW during the whole experimental period. Additionally, adult early-weaned rats exhibited cholesterol and fatty acid β-oxidation disorders, liver taurine reduction, cholestasis, and insulin and leptin resistance. Leucine supplementation partly alleviated these metabolic disorders and increased liver L-carnitine, retarding programmed obesity development. This study provides new insights into the mechanism of programmed obesity development and the potential benefits of leucine supplementation, which may offer suggestions for life planning and programmed obesity prevention.</p>
Abstract Background E-selectin is implicated in various inflammatory processes and related disorders. We aimed to investigate the role of SELE -gene genotypes/haplotypes on plasma levels of MMP9 and sE-selectin in Taiwanese individuals. Methods Five hundred twenty individuals were enrolled. Seven tagging SELE single nucleotide polymorphisms were analyzed. Results SELE genotypes were found associated with MMP9 and sE-selectin levels. Multivariate analysis identified that the most significant genetic polymorphism (rs5368 genotype) was independently associated with MMP9 levels ( P < 0.001). One haplotype (GGAGAGT) was marginally associated with MMP9 levels ( P = 0.0490). One SELE SNP, (rs3917406, P = 0.031) was associated with sE-selectin levels after adjusting for MMP9 and sICAM1 levels. Subgroup and interaction analysis revealed association of SELE SNP rs10800469 with sE-selectin levels only in the highest quartile of MMP9 level ( P = 0.002, interaction P = 0.023). Haplotype analysis showed one haplotype (AAAAAGC) borderline associated with sE-selectin level (P = 0.0511). Conclusion SELE genotypes/haplotypes are independently associated with MMP9 and E-selectin levels in Taiwanese individuals. The associations of SELE genotypes/haplotypes with sE-selectin levels are affected by MMP9 levels.
Plant parasitic nematodes (PPNs) are highly destructive and difficult to control, while conventional chemical nematicides are highly toxic and cause serious environmental pollution. Additionally, resistance to existing pesticides is becoming increasingly common. Biological control is the most promising method for the controlling of PPNs. Therefore, the screening of nematicidal microbial resources and the identification of natural products are of great significance and urgency for the environmentally friendly control of PPNs. In this study, the DT10 strain was isolated from wild moss samples and identified as Streptomyces sp. by morphological and molecular analysis. Using Caenorhabditis elegans as a model, the extract of DT10 was screened for nematicidal activity, which elicited 100% lethality. The active compound was isolated from the extracts of strain DT10 using silica gel column chromatography and semipreparative high-performance liquid chromatography (HPLC). The compound was identified as spectinabilin (chemical formula C28H31O6N) using liquid chromatography mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR). Spectinabilin exhibited a good nematicidal activity on C. elegans L1 worms, with a half-maximal inhibitory concentration (IC50) of 2.948 μg/mL at 24 h. The locomotive ability of C. elegans L4 worms was significantly reduced when treated with 40 μg/mL spectinabilin. Further analysis of spectinabilin against known nematicidal drug target genes in C. elegans showed that it acts via target(s) different from those of some currently used nematicidal drugs such as avermectin and phosphine thiazole. This is the first report on the nematicidal activity of spectinabilin on C. elegans and the southern root-knot nematode Meloidogyne incognita. These findings may pave the way for further research and application of spectinabilin as a potential biological nematicide.
<p> </p> <p>The advanced cessation of lactation elevates the risk of programmed obesity and obesity-related metabolic disorders in adulthood. The study used multi-omics analysis to investigate the mechanism behind this phenomenon and the effects of leucine supplementation on ameliorating programmed obesity development. Wistar/SD rat offspring were subjected to early weaning (EW) at d 17 (EWWIS and EWSD groups) or normal weaning at d 21 (CWIS and CSD groups). Half rats from the EWSD group were selected to create a new group with two-month leucine supplementation at d 150. The results showed that EW impaired lipid metabolic gene expressions and increased insulin, neuropeptide Y, and feed intake, inducing obesity in adulthood. Six lipid metabolism-related genes (<em>Acot1</em>, <em>Acot2</em>, <em>Acot4</em>, <em>Scd</em>, <em>Abcg8</em>, and <em>Cyp8b1</em>) were influenced by EW during the whole experimental period. Additionally, adult early-weaned rats exhibited cholesterol and fatty acid β-oxidation disorders, liver taurine reduction, cholestasis, and insulin and leptin resistance. Leucine supplementation partly alleviated these metabolic disorders and increased liver L-carnitine, retarding programmed obesity development. This study provides new insights into the mechanism of programmed obesity development and the potential benefits of leucine supplementation, which may offer suggestions for life planning and programmed obesity prevention.</p>
Postharvest diseases in lily plants are prevalent during storage and transportation, leading to potentially catastrophic economic losses for the lily industry. Specifically, bulb rot has been observed in Lanzhou lily (Lilium davidii var. unicolor) during cold storage in Beijing, China. In this study, fungal isolates were obtained from decayed bulbs using a conventional fungal separation method, and these isolates were confirmed to be the causative agent of lily bulb rot, according to Koch postulates. A representative isolate, LZ-3-10, was selected for further identification. Based on morphological features and internal transcribed spacer sequencing results, the LZ-3-10 isolate was identified as Rhizopus arrhizus. Subsequently, an endophytic bacterial strain exhibiting robust antagonistic ability, Bacillus siamensis B55, was screened from the roots of lily plants. Evaluation of its biocontrol ability revealed that strain B55 could effectively protect L. davidii var. unicolor bulbs from infection by LZ-3-10, demonstrating a biocontrol efficacy of 51.2% and significantly reducing the severity of lily Rhizopus rot. In summary, this study identifies R. arrhizus as the cause of postharvest bulb rot in L. davidii var. unicolor and, for the first time, showcases the biocontrol activity of the endophytic bacterial strain B. siamensis B55 against the isolated pathogenic fungus. These findings not only provide insights into lily bulb rot but also highlight the potential of B. siamensis B55 as a biocontrol agent for managing this disease during postharvest storage.