Abstract Background Systematic characterization of how genetic variation modulates gene regulation in a cell type-specific context is essential for understanding complex traits. To address this question, we profile gene expression and chromatin accessibility in cells from healthy retinae of 20 human donors through single-cell multiomics and genomic sequencing. Results We map eQTL, caQTL, allelic-specific expression, and allelic-specific chromatin accessibility in major retinal cell types. By integrating these results, we identify and characterize regulatory elements and genetic variants effective on gene regulation in individual cell types. The majority of identified sc-eQTLs and sc-caQTLs display cell type-specific effects, while the cis-elements containing genetic variants with cell type-specific effects are often accessible in multiple cell types. Furthermore, the transcription factors whose binding sites are perturbed by genetic variants tend to have higher expression levels in the cell types where the variants exert their effects, compared to the cell types where the variants have no impact. We further validate our findings with high-throughput reporter assays. Lastly, we identify the enriched cell types, candidate causal variants and genes, and cell type-specific regulatory mechanism underlying GWAS loci. Conclusions Overall, genetic effects on gene regulation are highly context dependent. Our results suggest that cell type-dependent genetic effect is driven by precise modulation of both trans-factor expression and chromatin accessibility of cis-elements. Our findings indicate hierarchical collaboration among transcription factors plays a crucial role in mediating cell type-specific effects of genetic variants on gene regulation.
Glaucoma is the leading cause of irreversible blindness, affecting 76 million globally. It is characterized by irreversible damage to the optic nerve. Pharmacotherapy manages intraocular pressure (IOP) and slows disease progression. However, non-adherence to glaucoma medications remains problematic, with 41-71% of patients being non-adherent to their prescribed medication. Despite substantial investment in research, clinical effort, and patient education protocols, non-adherence remains high. Therefore, we aimed to determine if there is a substantive genetic component behind patients' glaucoma medication non-adherence. We assessed glaucoma medication non-adherence with prescription refill data from the Marshfield Clinic Healthcare System's pharmacy dispensing database. Two standard measures were calculated: the medication possession ratio (MPR) and the proportion of days covered (PDC). Non-adherence on each metric was defined as less than 80% medication coverage over 12 months. Genotyping was done using the Illumina HumanCoreExome BeadChip in addition to exome sequencing on the 230 patients (1) to calculate the heritability of glaucoma medication non-adherence and (2) to identify SNPs and/or coding variants in genes associated with medication non-adherence. Ingenuity pathway analysis (IPA) was utilized to derive biological meaning from any significant genes in aggregate. Over 12 months, 59% of patients were found to be non-adherent as measured by the MPR80, and 67% were non-adherent as measured by the PDC80. Genome-wide complex trait analysis (GCTA) suggested that 57% (MPR80) and 48% (PDC80) of glaucoma medication non-adherence could be attributed to a genetic component. Missense mutations in TTC28, KIAA1731, ADAMTS5, OR2W3, OR10A6, SAXO2, KCTD18, CHCHD6, and UPK1A were all found to be significantly associated with glaucoma medication non-adherence by whole exome sequencing after Bonferroni correction (p < 10-3) (PDC80). While missense mutations in TINAG, CHCHD6, GSTZ1, and SEMA4G were found to be significantly associated with medication non-adherence by whole exome sequencing after Bonferroni correction (p < 10-3) (MPR80). The same coding SNP in CHCHD6 which functions in Alzheimer's disease pathophysiology was significant by both measures and increased risk for glaucoma medication non-adherence by three-fold (95% CI, 1.62-5.8). Although our study was underpowered for genome-wide significance, SNP rs6474264 within ZMAT4 (p = 5.54 × 10-6) was found to be nominally significant, with a decreased risk for glaucoma medication non-adherence (OR, 0.22; 95% CI, 0.11-0.42)). IPA demonstrated significant overlap, utilizing, both standard measures including opioid signaling, drug metabolism, and synaptogenesis signaling. CREB signaling in neurons (which is associated with enhancing the baseline firing rate for the formation of long-term potentiation in nerve fibers) was shown to have protective associations. Our results suggest a substantial heritable genetic component to glaucoma medication non-adherence (47-58%). This finding is in line with genetic studies of other conditions with a psychiatric component (e.g., post-traumatic stress disorder (PTSD) or alcohol dependence). Our findings suggest both risk and protective statistically significant genes/pathways underlying glaucoma medication non-adherence for the first time. Further studies investigating more diverse populations with larger sample sizes are needed to validate these findings.
The use of artificial intelligence (AI) and machine learning (ML) in clinical care offers great promise to improve patient health outcomes and reduce health inequity across patient populations. However, inherent biases in these applications, and the subsequent potential risk of harm can limit current use. Multi-modal workflows designed to minimize these limitations in the development, implementation, and evaluation of ML systems in real-world settings are needed to improve efficacy while reducing bias and the risk of potential harms. Comprehensive consideration of rapidly evolving AI technologies and the inherent risks of bias, the expanding volume and nature of data sources, and the evolving regulatory landscapes, can contribute meaningfully to the development of AI-enhanced clinical decision making and the reduction in health inequity.
A 14-month-old girl presents with recurrent left subconjunctival hemorrhage with increasing frequency in the past 7 months, with a large inferior orbital lesion measuring more than 17 mm shown during B-scan examination. What would you do next?