Abstract In the current work, suitability of hyperbranched polyglycerol as a high loading catalyst support is demonstrated. A polyglycerol‐supported manganese‐salen complex (chemzyme) is applied as a homogeneous catalyst in the epoxidation of 6‐cyano‐2,2‐dimethylchromene. The recyclability of the corresponding catalyst was investigated in repetitive batch experiments as well as a continuous operation of the reaction in an ultrafiltration membrane reactor. An enhanced stability of the catalyst in repetitive batches was observed as a result of immobilization whereby the total turnover number increased from 23 in a single batch to 80 in four repetitive batches. To enable continuous operation, a continuously operated, stirred tanked reactor (CSTR) was equipped with an ultrafiltration membrane (MPF‐50) and a retention of 98% was determined. The continuous chemzyme membrane reactor was operated over the course of 20 residence times. After approximately 12 residence times, the steady state was reached yielding 70% conversion as well as an enantiomeric excess up to 92%. A space‐time yield (sty) of 458 g L −1 d −1 and a turnover frequency (TOF reaction ) of up to 18 h −1 was reached in the steady state. It was determined that the total turnover number (TTN) was enhanced by a factor of 10 from 24 (batch) up to 240 for 20 residence times in CSTR operation.
When two strains of Pseudomonas aeruginosa were subjected in vitro to decreasing fosfomycin concentrations in liquid cultures a half-life dependent delay of regrowth occurred after concentrations had fallen below the MIC (post-MIC effect). There was no post-MIC effect at the short half-lives corresponding to those normally found in mice. However, in similar experiments with surface cultures a post-MIC effect could also be demonstrated at short half-lives. No post-MIC effect, with reference to serum concentrations, could be found in mice infected with the same strains either in a septicaemia or infected thigh model.
The molecular dynamics of polymeric nanocarriers is an important parameter for controlling the interaction of nanocarrier branches with cargo. Understanding the interplay of dendritic polymer dynamics, temperature, and cargo molecule interactions should provide valuable new insight for tailoring the dendritic architecture to specific needs in nanomedicine, drug, dye, and gene delivery. Here, we have investigated polyglycerol-based core-multishell (CMS) nanotransporters with incorporated Nile Red as a fluorescent drug mimetic and CMS nanotransporters with a covalently bound fluorophore (Indocarbocyanine) using fluorescence spectroscopy methods. From time-resolved fluorescence depolarization we have obtained the rotational diffusion dynamics of the incorporated dye, the nanocarrier, and its branches as a function of temperature. UV/vis and fluorescence lifetime measurements provided additional information on the local dye environment. Our results show a distribution of the cargo Nile Red within the nanotransporter shells that depends on solvent and temperature. In particular, we show that the flexibility of the polymer branches in the unimolecular state of the nanotransporter undergoes a temperature-dependent transition which correlates with a larger space for the mobility of the incorporated hydrophobic drug mimetic Nile Red and a higher probability of cargo-solvent interactions at temperatures above 31 °C. The measurements have further revealed that a loss of the cargo molecule Nile Red occurred neither upon dilution of the CMS nanotransporters nor upon heating. Thus, the unimolecular preloaded CMS nanotransporters retain their cargo and are capable to transport and respond to temperature, thereby fulfilling important requirements for biomedical applications.
A simple and efficient concept has been developed for the synthesis of pH-responsive molecular nanocarriers based on commercially available hyperbranched polymers. These dendritic core-shell architectures can encapsulate, transport, and selectively release polar guest molecules in an acidic environment (pH 3–6, see scheme). The observed release properties render these molecular nanocarriers promising candidates for controlled drug and gene delivery. Supporting information for this article is available on the WWW under http://www.wiley-vch.de/contents/jc_2002/2002/z19603_s.pdf or from the author. Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
A rapid and universal approach for multifunctional material coatings was developed based on a mussel-inspired dendritic polymer. This new kind of polymer mimics not only the functional groups of mussel foot proteins (mfps) but also their molecular weight and molecular structure. The large number of catechol and amine groups set the basis for heteromultivalent anchoring and crosslinking. The molecular weight reaches 10 kDa, which is similar to the most adhesive mussel foot protein mfp-5. Also, the dendritic structure exposes its functional groups on the surface like the folded proteins. As a result, a very stable coating can be prepared on virtually any type of material surface within 10 min by a simple dip-coating method, which is as fast as the formation of mussel byssal threads in nature.
Dendrimers are an important class of polymeric materials for a broad range of applications in which monodispersity and multivalency are of interest. Here we report on a highly efficient synthetic route towards bifunctional polyglycerol dendrons on a multigram scale. Commercially available triglycerol (1), which is highly biocompatible, was used as starting material. By applying Williamson ether synthesis followed by an ozonolysis/reduction procedure, glycerol-based dendrons up to the fourth generation were prepared. The obtained products have a reactive core, which was further functionalized to the corresponding monoazido derivatives. By applying copper(I)-catalyzed 1,3-dipolar cycloaddition, so-called "click" coupling, a library of core-shell architectures was prepared. After removal of the 1,2-diol protecting groups, water-soluble core-shell architectures 24-27 of different generations were obtained in high yields. In the structure-transport relationship with Nile red we observe a clear dependence on core size and generation of the polyglycerol dendrons.
Water-soluble perylene tetracarboxylic acid bisimides (PBIs) with terminally linked polyglycerol dendrons of four different generations have been synthesized. These PBI dyes reveal a strong dendritic effect, enabling outstanding fluorescence quantum yields in water up to almost 100% for the highest dendron generation.