Atrial Fibrillation (AF) is the most common arrhythmia in the intensive care unit (ICU) and is associated with increased morbidity and mortality. Identification of patients at risk for AF is not routinely performed as AF prediction models are almost solely developed for the general population or for particular ICU populations. However, early AF risk identification could help to take targeted preemptive actions and possibly reduce morbidity and mortality. Predictive models need to be validated across hospitals with different standards of care and convey their predictions in a clinically useful manner. Therefore, we designed AF risk models for ICU patients using uncertainty quantification to provide a risk score and evaluated them on multiple ICU datasets. Three CatBoost models, utilizing feature windows comprising data 1.5-13.5, 6-18, or 12-24 hours before AF occurrence, were built using 2-repeat-10-fold cross-validation on AmsterdamUMCdb, the first freely available European ICU database. Furthermore, AF Patients were matched with no-AF patients for training. Transferability was validated using a direct and a recalibration evaluation on two independent external datasets, MIMIC-IV and GUH. The calibration of the predicted probability, used as an AF risk score, was measured using the Expected Calibration Error (ECE) and the presented Expected Signed Calibration Error (ESCE). Additionally, all models were evaluated across time during the ICU stay. The model performance reached Areas Under the Curve (AUCs) of 0.81 at internal validation. Direct external validation showed partial generalizability with AUCs reaching 0.77. However, recalibration resulted in performances matching or exceeding that of the internal validation. All models furthermore showed calibration capabilities demonstrating adequate risk prediction competence. Ultimately, recalibrating models reduces the challenge of generalization to unseen datasets. Moreover, utilizing the patient-matching methodology together with the assessment of uncertainty calibration can serve as a step toward the development of clinical AF prediction models.
Abstract Background Early mobilisation (EM) is an intervention that may improve the outcome of critically ill patients. There is limited data on EM in COVID-19 patients and its use during the first pandemic wave. Methods This is a pre-planned subanalysis of the ESICM UNITE-COVID, an international multicenter observational study involving critically ill COVID-19 patients in the ICU between February 15th and May 15th, 2020. We analysed variables associated with the initiation of EM (within 72 h of ICU admission) and explored the impact of EM on mortality, ICU and hospital length of stay, as well as discharge location. Statistical analyses were done using (generalised) linear mixed-effect models and ANOVAs. Results Mobilisation data from 4190 patients from 280 ICUs in 45 countries were analysed. 1114 (26.6%) of these patients received mobilisation within 72 h after ICU admission; 3076 (73.4%) did not. In our analysis of factors associated with EM, mechanical ventilation at admission (OR 0.29; 95% CI 0.25, 0.35; p = 0.001), higher age (OR 0.99; 95% CI 0.98, 1.00; p ≤ 0.001), pre-existing asthma (OR 0.84; 95% CI 0.73, 0.98; p = 0.028), and pre-existing kidney disease (OR 0.84; 95% CI 0.71, 0.99; p = 0.036) were negatively associated with the initiation of EM. EM was associated with a higher chance of being discharged home (OR 1.31; 95% CI 1.08, 1.58; p = 0.007) but was not associated with length of stay in ICU (adj. difference 0.91 days; 95% CI − 0.47, 1.37, p = 0.34) and hospital (adj. difference 1.4 days; 95% CI − 0.62, 2.35, p = 0.24) or mortality (OR 0.88; 95% CI 0.7, 1.09, p = 0.24) when adjusted for covariates. Conclusions Our findings demonstrate that a quarter of COVID-19 patients received EM. There was no association found between EM in COVID-19 patients' ICU and hospital length of stay or mortality. However, EM in COVID-19 patients was associated with increased odds of being discharged home rather than to a care facility. Trial registration ClinicalTrials.gov: NCT04836065 (retrospectively registered April 8th 2021).
Purpose: To explore the preconditions posed by intensivists and residents in the intensive care unit (ICU) to use an artificial intelligence (AI) or machine learning (ML) based clinical decision support system (CDSS) in daily practice.Methods: Mixed methods study using a survey (9 hospitals) and focus groups (7 hospitals) performed between April 2022 and October 2022 in hospitals with a certified ICU in Flanders (Belgium).Results: Sixty-nine intensivists and residents (median age 37 yo, 42% female) working in the ICU completed the survey, and 55 (median age 37 yo, 43.6 % female) participated in 11 focus groups. Explainability, workflow integration, and prospective clinical trials that prove patient safety and clinical impact were important practical preconditions. Trust was identified as a key but intangible precondition with psychological and behavioral impact. Preconditions posed by the current ethical and legal framework were discussed in detail. Other topics such as research and development, fairness, autonomy, education, cost-effectiveness, privacy, and the future of employment were also debated. Conclusion: By unveiling this granular information on practical, psychological, behavioral, legal, and ethical preconditions we hope to inform researchers, entrepreneurs, and policymakers of the necessary steps to take to bridge the AI research-implementation gap in the ICU.
Abstract Background Several studies have indicated that commonly used piperacillin-tazobactam (TZP) and meropenem (MEM) dosing regimens lead to suboptimal plasma concentrations for a range of pharmacokinetic/pharmacodynamic (PK/PD) targets in intensive care unit (ICU) patients. These targets are often based on a hypothetical worst-case scenario, possibly overestimating the percentage of suboptimal concentrations. We aimed to evaluate the pathogen-based clinically relevant target attainment (CRTA) and therapeutic range attainment (TRA) of optimized continuous infusion dosing regimens of TZP and MEM in surgical ICU patients. Methods A single center prospective observational study was conducted between March 2016 and April 2019. Free plasma concentrations were calculated by correcting total plasma concentrations, determined on remnants of blood gas samples by ultra-performance liquid chromatography with tandem mass spectrometry, for their protein binding. Break points (BP) of identified pathogens were derived from epidemiological cut-off values. CRTA was defined as a corrected measured total serum concentration above the BP and calculated for increasing BP multiplications up to 6 × BP. The upper limit of the therapeutic range was set at 157.2 mg/L for TZP and 45 mg/L for MEM. As a worst-case scenario, a BP of 16 mg/L for TZP and 2 mg/L for MEM was used. Results 781 unique patients were included with 1036 distinctive beta-lactam antimicrobial prescriptions (731 TZP, 305 MEM) for 1003 unique infections/prophylactic regimens (750 TZP, 323 MEM). 2810 samples were available (1892 TZP, 918 MEM). The median corrected plasma concentration for TZP was 86.4 mg/L [IQR 56.2–148] and 16.2 mg/L [10.2–25.5] for MEM. CRTA and TRA was consistently higher for the pathogen-based scenario than for the worst-case scenario, but nonetheless, a substantial proportion of samples did not attain commonly used PK/PD targets. Conclusion Despite these pathogen-based data demonstrating that CRTA and TRA is higher than in the often-used theoretical worst-case scenario, a substantial proportion of samples did not attain commonly used PK/PD targets when using optimised continuous infusion dosing regimens. Therefore, more dosing optimization research seems warranted. At the same time, a ‘pathogen-based analysis’ approach might prove to be more sensible than a worst-case scenario approach when evaluating target attainment and linked clinical outcomes.
This article is one of ten reviews selected from the Annual Update in Intensive Care and Emergency Medicine 2022. Other selected articles can be found online at https://www.biomedcentral.com/collections/annualupdate2022 . Further information about the Annual Update in Intensive Care and Emergency Medicine is available from https://link.springer.com/bookseries/8901 .