Abstract Early findings that PLK1 is highly expressed in cancer have driven an exploration of its functions in metastasis. However, whether PLK1 induces metastasis in vivo and its underlying mechanisms in NSCLC have not yet been determined. Here, we show that the expression of active PLK1 phosphorylated at T210, abundant in TGF-β-treated lung cells, potently induced metastasis in a tail-vein injection model. Active PLK1 with intact polo-box and ATP-binding domains accelerated cell motility and invasiveness by triggering EMT reprogramming, whereas a phosphomimetic version of p-S137-PLK1 did not, indicating that the phosphorylation status of PLK1 may determine the cell traits. Active PLK1-driven invasiveness upregulated TGF-β signaling and TSG6 encoded by TNFAIP6 . Loss of TNFAIP6 disturbed the metastatic activity induced by active PLK1 or TGF-β. Clinical relevance shows that PLK1 and TNFAIP6 are strong predictors of poor survival rates in metastatic NSCLC patients. Therefore, we suggest that active PLK1 promotes metastasis by upregulating TGF-β signaling, which amplifies its metastatic properties by forming a positive feedback loop and that the PLK1/TGF-β-driven metastasis is effectively blocked by targeting PLK1 and TSG6, providing PLK1 and TSG6 as negative markers for prognostics and therapeutic targets in metastatic NSCLC.
In the present study, an accurate and reproducible method for quantifying cell-free DNA (cfDNA) in human blood was established and tested for its ability to predict gastric cancer in patients. Using ʻAlu81-qPCR' to amplify 81-bp Alu DNA sequences, we first estimated the amount of cfDNA in the serum or plasma of 130 patients with gastric cancer to identify which source of cfDNA is more suitable for the biomarker screening of these patients. The results of Alu81-qPCR revealed that the amount of cfDNA in the plasma was low compared with that in the serum, but was found at similar levels among the samples, indicating that the plasma may be a more suitable source of cfDNA for biomarker screening. For the 54 patients with gastric cancer and the 59 age-matched healthy controls, the mean levels of plasma cfDNA were 2.4-fold higher in the patient group compared with the control group, indicating that plasma cfDNA levels may be useful for predicting patients with gastric cancer. The results of our study suggest that Alu81-qPCR is a more reliable method than other techniques, such as the PicoGreen assay, for quantifying cfDNA in human blood, demonstrating the potential to complement current diagnostic procedures for the management of gastric cancer patients.
Protein kinase D (PKD) 1 influences cell migration by mediating both trans -Golgi vesicle fission and integrin recycling to the cell surface. Using restriction landmark genomic scanning methods, we found that the promoter region of PKD1 was aberrantly methylated in gastric cancer cell lines. Silencing of PKD1 expression was detected in 72.7% of gastric cancer cell lines examined, and the silencing was associated with CpG hypermethylation in the promoter region of PKD1 . Treatment with 5-aza-2′-deoxycytidine and trichostatin A partially reversed PKD1 methylation and restored gene expression in PKD1 -silenced cell lines. Real-time reverse transcription–polymerase chain reaction analysis of 96 paired clinical primary gastric cancer samples revealed that 59% of the analyzed tumors had a >2-fold decrease in PKD1 expression compared with each normal-appearing tissue and that this downregulation of PKD1 expression was significantly correlated with increased methylation. We also observed a gradual increase in the level of promoter methylation of PKD1 in aging, normal-appearing mucosal tissues, suggesting that PKD1 methylation may be one of the earliest events that predispose an individual to gastric cancer. PKD1 expression was required for directional migration of gastric cancer cells. Furthermore, knock down of PKD1 by RNA interference promoted the invasiveness of cell lines that expressed PKD1 at relatively high levels. Based on these results, we propose that PKD1 is frequently silenced by epigenetic regulation, which plays a role in cell migration and metastasis in gastric cancer.
Pathological changes in the epigenetic landscape of chromatin are hallmarks of cancer. The caudal-type homeobox gene CDX2 is not expressed in normal gastric epithelia but rather in adult intestinal epithelia, and it is overexpressed in intestinal metaplasia (IM). However, it remains unclear how CDX2 transcription is suppressed in normal gastric epithelial cells and overexpressed in IM. Here, we demonstrate that methylation of the CDX2 promoter increases with age in Helicobacter pylori-positive, noncancerous gastric tissue, whereas the promoter is demethylated in paired gastric tumors in which CDX2 is upregulated. Moreover, we also found that the CDX2 promoter is demethylated in IM as well as gastric tumor. Immunohistochemistry revealed that CDX2 is present in foci of parts of the gastric mucosae but highly expressed in IM as well as in gastric tumors, suggesting that the elevated level of CDX2 in IM and gastric tumors may be attributable to promoter demethylation. Our data suggest that CDX2 repression may be associated with promoter methylation in noncancerous H. pylori-positive mucosa but its upregulation might be attributable to increased promoter activity mediated by chromatin remodeling during gastric carcinogenesis.
Polo-like kinase 1, a mitotic Ser/Thr kinase, has emerged as a molecular target for the development of anticancer drugs. In this study, we found that polo-like kinase 1 activity was inhibited by 7-O-methylwogonin and related flavones, including baicalein, dihydrobaicalein, and viscidulin II, isolated from Scutellaria baicalensis. Although dihydrobaicalein exhibited the highest polo-like kinase 1 inhibitory activity among the four compounds, it also inhibited other kinases, such as vaccinia-related kinase 2 and polo-like kinase 2. Baicalein and viscidulin II also showed low selectivity to polo-like kinase 1 since they inhibited polo-like kinase 3 and polo-like kinase 2, respectively. However, 7-O-methylwogonin exhibited selective polo-like kinase 1 inhibitory activity, as evidenced from in vitro kinase assays based on fluorescence resonance energy transfer assays and ADP-Glo kinase assays. In addition, examination of mitotic morphology and immunostaining using specific antibodies for the mitotic markers, p-histone H3 and mitotic protein monoclonal 2, in Hep3B cells showed that 7-O-methylwogonin treatment increased mitotic cell populations due to inhibition of mitotic progression as a result of polo-like kinase 1 inhibition. The pattern of 7-O-methylwogonin-induced mitotic arrest was similar to that of BI 2536, a specific polo-like kinase 1 inhibitor. Thus, it was suggested that 7-O-methylwogonin disturbed mitotic progression by inhibiting polo-like kinase 1 activity. These data suggest that 7-O-methylwogonin, a polo-like kinase 1 inhibitor, may be a useful anticancer agent because of its polo-like kinase 1 selectivity and effectiveness.
Abstract Leucine-rich repeat-containing 3B (LRRC3B) is an evolutionarily highly conserved leucine-rich repeat-containing protein, but its biological significance is unknown. Using restriction landmark genomic scanning and pyrosequencing, we found that the promoter region of LRRC3B was aberrantly methylated in gastric cancer. Gastric cancer cell lines displayed epigenetic silencing of LRRC3B, but treatment with the DNA methylation inhibitor 5-aza-2′-deoxycytidine and/or the histone deacetylase inhibitor trichostatin A increased LRRC3B expression in gastric cancer cell lines. Real-time reverse transcription-PCR analysis of 96 paired primary gastric tumors and normal adjacent tissues showed that LRRC3B expression was reduced in 88.5% of gastric tumors compared with normal adjacent tissues. Pyrosequencing analysis of the promoter region revealed that LRRC3B was significantly hypermethylated in gastric tumors. Stable transfection of LRRC3B in SNU-601 cells, a gastric cancer cell line, inhibited anchorage-dependent and anchorage-independent colony formation, and LRRC3B expression suppressed tumorigenesis in nude mice. Microarray analysis of LRRC3B-expressing xenograft tumors showed induction of immune response–related genes and IFN signaling genes. H&E-stained sections of LRRC3B-expressing xenograft tumors showed lymphocyte infiltration in the region. We suggest that LRRC3B is a putative tumor suppressor gene that is silenced in gastric cancers by epigenetic mechanisms and that LRRC3B silencing in cancer may play an important role in tumor escape from immune surveillance. [Cancer Res 2008;68(17):7147–55]
<div>Abstract<p>Leucine-rich repeat-containing 3B (LRRC3B) is an evolutionarily highly conserved leucine-rich repeat-containing protein, but its biological significance is unknown. Using restriction landmark genomic scanning and pyrosequencing, we found that the promoter region of <i>LRRC3B</i> was aberrantly methylated in gastric cancer. Gastric cancer cell lines displayed epigenetic silencing of <i>LRRC3B</i>, but treatment with the DNA methylation inhibitor 5-aza-2′-deoxycytidine and/or the histone deacetylase inhibitor trichostatin A increased <i>LRRC3B</i> expression in gastric cancer cell lines. Real-time reverse transcription-PCR analysis of 96 paired primary gastric tumors and normal adjacent tissues showed that <i>LRRC3B</i> expression was reduced in 88.5% of gastric tumors compared with normal adjacent tissues. Pyrosequencing analysis of the promoter region revealed that <i>LRRC3B</i> was significantly hypermethylated in gastric tumors. Stable transfection of <i>LRRC3B</i> in SNU-601 cells, a gastric cancer cell line, inhibited anchorage-dependent and anchorage-independent colony formation, and <i>LRRC3B</i> expression suppressed tumorigenesis in nude mice. Microarray analysis of <i>LRRC3B</i>-expressing xenograft tumors showed induction of immune response–related genes and IFN signaling genes. H&E-stained sections of <i>LRRC3B</i>-expressing xenograft tumors showed lymphocyte infiltration in the region. We suggest that <i>LRRC3B</i> is a putative tumor suppressor gene that is silenced in gastric cancers by epigenetic mechanisms and that <i>LRRC3B</i> silencing in cancer may play an important role in tumor escape from immune surveillance. [Cancer Res 2008;68(17):7147–55]</p></div>