Hybrid nanomaterials containing both noble metal and semiconductor building blocks provide an engineerable platform for realizing direct or indirect charge and energy transfer for enhanced plasmonic photoconversion and photocatalysis. In this work, silver nanoparticles (AgNPs) and chalcopyrite (CuFeS2) nanocrystals (NCs) are combined into a AgNP@CuFeS2 hybrid structure comprising NCs embedded in a self-assembled lipid coating around the AgNP core. In AgNP@CuFeS2 hybrid structures, both metallic and semiconductor NCs support quasistatic resonances. To characterize the interactions between these resonances and their effect on potential charge and energy transfer, direct interfacial excitation transfer between the AgNP core and surrounding CuFeS2 NCs is probed through single particle line shape analysis and supporting electromagnetic simulations. These studies reveal that CuFeS2 NCs localized in the evanescent field of the central AgNP induce a broadening of the metal NP line shape that peaks when an energetic match between the AgNP and CuFeS2 NC resonances maximizes direct energy transfer. Dimers of AgNPs whose resonances exhibit poor energetic overlap with the CuFeS2 NC quasistatic resonance yield much weaker line shape broadening in a control experiment, corroborating the existence of resonant energy transfer in the AgNP@CuFeS2 hybrid. Resonant coupling between the metallic and semiconductor building blocks in the investigated hybrid architecture provides a mechanism for utilizing the large optical cross-section of the central AgNP to enhance the generation of reactive charge carriers in the surrounding semiconductor NCs for potential applications in photocatalysis.
Nanocrystals are often synthesized using technical grade reagents such as oleylamine (OLAm), which contains a blend of 9-cis-octadeceneamine with trans-unsaturated and saturated amines. Here, we show that gold nanowires (AuNWs) synthesized with OLAm ligands undergo thermal transitions in interfacial assembly (ribbon vs. nematic); transition temperatures vary widely with the batch of OLAm used for synthesis. Mass spectra reveal that higher-temperature AuNW assembly transitions are correlated with an increased abundance of trans and saturated chains in certain blends. DSC thermograms show that both pure (synthesized) and technical-grade OLAm have primary melting transitions near −5 °C (20–30 °C lower than the literature melting temperature range of OLAm). A second, broader melting transition (in the previous reported melting range) appears in technical grade blends; its temperature varies with the abundance of trans and saturated chains. Our findings illustrate that, similar to biological membranes, blends of alkyl chains can be used to generate mesoscopic hierarchical nanocrystal assembly, particularly at interfaces that further modulate transition temperatures.