Lung cancer is a leading cause of cancer-related deaths worldwide. NOTCH3 signaling is mainly expressed in non-small cell lung carcinoma (NSCLC), and has been proposed as a therapeutic target of NSCLC. While, few agents for preventing or treating NSCLC via targeting NOTCH3 signaling are used in modern clinical practice. Evodiamine (EVO), an alkaloid derived from Euodiae Fructus, possesses low toxicity and has long been shown to exert anti-lung cancer activity. However, the underlying anti-lung cancer mechanisms of EVO are not yet fully understood. In this study, we explored the involvement of NOTCH3 signaling in the anti-lung cancer effects of EVO. Urethane-induced lung cancer mouse model and two NSCLC cell models, A549 and H1299, were used to evaluate the in vivo and in vitro anti-lung cancer action of EVO. A DNA methyltransferase inhibitor was employed to investigate the role of NOTCH3 signaling in the anti-lung cancer effects of EVO. Results showed that EVO potently reduced tumor size and tumor numbers in mice, and inhibited NOTCH3 in the tumors. EVO also dramatically reduced cell viability, induced G2/M cell cycle arrest, inhibited cell migration and reduced stemness in cultured NSCLC cells. Mechanistic studies showed that EVO potently inhibited NOTCH3 signaling by activation of DNMTs-induced NOTCH3 methylation. Importantly, inhibition of NOTCH3 methylation in NSCLC cells diminished EVO's anti-NSCLC effects. Collectively, EVO, a novel NOTCH3 methylation stimulator, exerted potent anti-lung cancer effects partially by inhibiting NOTCH3 signaling. These findings provide new insight into the EVO's anti-NSCLC action, and suggest a potential role of EVO in lung cancer prevention and treatment.
Inflammatory bowel disease (IBD) is a chronic immune-related disease mainly caused by the disequilibrium of T helper (Th) cell paradigm? Pogostone (PO) is one of the major chemical constituents of Pogostemon cablin (Blanco) Benth. The present study aims to investigate the potential benefit of PO against IBD in a 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced experimental colitis model. PO treatment by enema significantly brought down the disease activity index (DAI) of the TNBS-challenged rats, which was manifested by the ameliorated inflammatory features including ulceration, adhesion, and edema. Hematoxylin-eosin (HE) staining and immunohistochemistry analysis showed that PO effectively relived colon damage by restoring epithelium, and more importantly, by inhibiting the infiltration of pro-inflammatory Th1 and Th17 cells in the colon. Additionally, PO inhibited the activity of myeloperoxidase and secretion of inflammatory cytokines including IFN-γ, IL-12p70, IL-17A, and IL-10. Together with our previous findings, the present data indicated that the anti-IBD effect of PO probably related to its direct inhibition on Th cell proliferation and suppression of the cytokines secretion. These results highlighted the potential of PO as a promising candidate to relieve IBD.
We evaluated the effect of microRNA (miR)-9 inhibition on fracture healing in a rat model of femoral fracture. The rats were divided into sham, negative control and miR-9 inhibitor groups. The miR-9 inhibitor group received 30 pmol/mL inhibitor intrathecally for 8 consecutive weeks following surgery-induced femoral fracture. The effect of miR-9 inhibition on fracture healing was estimated by determining the bone mineral density (BMD) and by performing X-ray analysis of the fractured bone. The serum levels of markers of bone formation were estimated by enzyme-linked immunosorbent assay and reverse transcription polymerase chain reaction, and western blotting and immunohistochemical analysis were performed to assess the effect of miR-9 inhibition on fracture healing. The BMD at the fracture site was significantly higher in the miR-9 inhibitor group than in the negative control group. Inhibition of miR-9 blocked the fracture gap and resulted in new callus formation at the fracture site. The serum levels of osteocalcin and bone GLA protein were increased and that of alkaline phosphatase was decreased by inhibition of miR-9 compared to levels in the negative control. However, inhibition of miR-9 significantly increased the mRNA levels of runt-related transcription factor 2 (Runx2) and bone morphogenetic protein 7 (BMP-7) in the bone tissue at the fracture site compared to the negative control group; this result was confirmed by western blotting. In conclusion, miR-9 inhibition enhanced fracture healing by modulating the BMP-7/Runx2 signalling pathway in a rat model of femoral fracture.
RIP1 has emerged as a master regulator in TNFα signaling that controls two distinct cellular fates: cell survival versus programmed cell death. Because the default response of most cells to TNFα is NF-κB–mediated inflammation and survival, a specific mechanism must exist to control the divergence of signaling outcome. Here, we identify HSPA13 as a transcription-independent checkpoint to modulate the role of RIP1 in TNFα signaling. Through specific binding to TNFR1 and RIP1, HSPA13 enhances TNFα-induced recruitment of RIP1 to TNFR1, and consequently promotes downstream NF-κB transcriptional responses. Meanwhile, HSPA13 attenuates the participation of RIP1 in cytosolic complex II and prevents cells from programmed death. Loss of HSPA13 shifts the transition of RIP1 from complex I to complex II and promotes both apoptosis and necroptosis. Thus, our study provides compelling evidence for the cellular protective function of HSPA13 in fine-tuning TNFα responses.
Ulcerative colitis (UC) is associated with intestinal immune imbalance and inflammatory response. Because dehydrolovastatin (DLVT), a derivative of lovastatin, has been recently shown to inhibit inflammation and relieve immune arthritis induced by chemical stimuli, we studied its effect and possible mechanism on UC induced by dextran sulfate sodium. The BALB/c mice were classified into six groups: normal control group, model group, DLVT high dose group, DLVT low dose group, salazosulfapyridine (SASP) group and lovastatin (LVT) group. The disease activity indices of UC and pathological changes were investigated. The myeloperoxidase (MPO) activity in colon tissue and inflammatory factors such as IL-6, IL-10, IL-17, and TNF-α in the serum were analyzed by ELISA, while the expression of NF-κB p65 protein in colon tissue was detected by immunohistochemistry and western blot. DLVT relieved the disease activity indices and pathological damage of the UC mice. Furthermore, DLVT significantly decreased MPO activity and improved the imbalance of inflammatory cytokines through inhibiting the expression of NF-κB p65. Meanwhile, the positive drug of SASP has a similar effect to DLVT, but the effect of DLVT in both decreasing IL-17, TNF-α, and increasing IL-10 was significantly stronger than that of SASP. These results suggest that DLVT may ameliorates the symptoms of UC.
Aconitine (AC) is the primary bioactive and secondary metabolite alkaloidin of Aconitum species which is accounted for more than 60% of the total diester-diterpenoid alkaloids in Aconite. To evaluate the analgesic effects of AC, 4 different pain models including hot plate assay, acetic acid writhing assay, formalin and CFA induced pain models were adopted in this study. In hot plate experiment, AC treatment at concentration of 0.3 mg/kg and 0.9 mg/kg improved the pain thresholds of mice similar to the positive drug aspirin at the concentration of 200 mg/kg (17.12% and 20.27% VS 19.21%). In acetic acid writhing experiment, AC significantly reduced the number of mice writhing events caused by acetic acid, and the inhibition rates were 68% and 76%. These results demonstrated that AC treatment revealed significant analgesic effects in both acute thermal stimulus pain model and chemically-induced visceral pain model. The biphasic nociceptive responses induced by formalin were significantly inhibited after AC treatment for 1h or 2h. The inhibition rates were 33.23% and 20.25% of AC treatment for 1h at 0.3 mg/kg and 0.9 mg/kg in phase I. In phase II, the inhibition rates of AC and aspirin were 36.08%, 32.48% and 48.82% respectively, which means AC showed similar analgesic effect to non-steroidal anti-inflammatory compounds. In the chronic CFA-induced nociception model, AC treatment also improved mice pain threshold to 131.33% at 0.3 mg/kg, which was similar to aspirin group (152.03%). Above all, our results verified that AC had obviously analgesic effects in different mice pain models.
LIM domain kinase 1 (LIMK1), an actin-binding kinase, can phosphorylate and inactivate its substrates, and can regulate long-term memory and synaptic plasticity. Both β-amyloid precursor protein (App) and presenilin (PS) are functional degeneration factors during early neuronal development, and are considered as potential factors that contribute to the development of Alzheimer's disease (AD). However, hardly any information is available about the distribution and expression of LIMK1. Thus, using the App and PS deficient mice, the role of LIMK1 was demonstrated in the absence of App and PS. Our results showed that LIMK1 was present in the nerve fiber layer and external plexiform layer of the olfactory bulb, as well as in the mitral cells and Purkinje cells of the cerebellum in App and PS deficient mice. Additionally, LIMK1 was concentrated in the granule cell layer of the olfactory bulb and cerebellum and LIMK1 positive cells were located in the CA1 region of the hippocampus. Our study indicates that there is a connection between LIMK1 and AD in the mouse model of AD. This might explain neurological problems such as cerebellar ataxia, impaired long-term memory, and impaired synaptic plasticity observed in AD.