Abstract Background Butyric acid, an essential C4 platform chemical, is widely used in food, pharmaceutical, and animal feed industries. Clostridium tyrobutyricum is the most promising microorganism for industrial bio-butyrate production. However, the metabolic driving mechanism for butyrate synthesis was still not profoundly studied. Results This study reports a first-generation genome-scale model (GEM) for C. tyrobutyricum , which provides a comprehensive and systematic analysis for the butyrate synthesis driving mechanisms. Based on the analysis in silico, an energy conversion system, which couples the proton efflux with butyryl-CoA transformation by two redox loops of ferredoxin, could be the main driving force for butyrate synthesis. For verifying the driving mechanism, a hydrogenase (HydA) expression was perturbed by inducible regulation and knockout. The results showed that HydA deficiency significantly improved the intracellular NADH/NAD + rate, decreased acetate accumulation (63.6% in serum bottle and 58.1% in bioreactor), and improved the yield of butyrate (26.3% in serum bottle and 34.5% in bioreactor). It was in line with the expectation based on the energy conversion coupling driving mechanism. Conclusions This work show that the first-generation GEM and coupling metabolic analysis effectively promoted in-depth understanding of the metabolic driving mechanism in C. tyrobutyricum and provided a new insight for tuning metabolic flux direction in Clostridium chassis cells.
Abstract Clostridium tyrobutyricum produces butyric and acetic acids from glucose. The butyric acid yield and selectivity in the fermentation depend on NADH available for acetate reassimilation to butyric acid. In this study, benzyl viologen (BV), an artificial electron carrier that inhibits hydrogen production, was used to increase NADH availability and butyric acid production while eliminating acetic acid accumulation by facilitating its reassimilation. To better understand the mechanism of and find the optimum condition for BV effect on enhancing acetate assimilation and butyric acid production, BV at various concentrations and addition times during the fermentation were studied. Compared with the control without BV, the addition of 1 μM BV increased butyric acid production from glucose by ∼50% in yield and ∼29% in productivity while acetate production was completely inhibited. Furthermore, BV also increased the coutilization of glucose and exogenous acetate for butyric acid production. At a concentration ratio of acetate (g/L) to BV (mM) of 4, both acetate assimilation and butyrate biosynthesis increased with increasing the concentrations of BV (0–6.25 μM) and exogenous acetate (0–25 g/L). In a fed‐batch fermentation with glucose and ∼15 g/L acetate and 3.75 μM BV, butyrate production reached 55.9 g/L with productivity 0.93 g/L/h, yield 0.48 g/g, and 97.4% purity, which would facilitate product purification and reduce production cost. Manipulating metabolic flux and redox balance via BV and acetate addition provided a simple to implement metabolic process engineering approach for butyric acid production from sugars and biomass hydrolysates.
With the excessive use of fossil fuels, atmospheric carbon dioxide (CO2) concentrations have risen dramatically in recent decades, leading to serious environmental and social issues linked to global climate change. The emergence of renewable energy sources, such as solar, tidal, and wind energy, has created favorable conditions for large-scale electricity production. Recently, significant attention has been drawn to utilizing renewable energy to catalyze the conversion of CO2 into fuels, producing substantial industrial feedstocks. In these CO2 conversion processes, the structure and performance of catalysts are critical. Metal-organic frameworks (MOFs) and their derivatives have emerged as promising electrocatalysts for CO2 reduction, offering advantages such as high surface area, porosity, exceptional functionality, and high conversion efficiency. This article provides a comprehensive review of structural regulation strategies for copper-based MOFs, highlighting innovative mechanisms like synergistic bimetallic catalysis, targeted doping strategies, and the construction of heterostructures. These novel approaches distinguish this review from previous studies, offering new insights into the electrocatalytic performance of copper-based MOFs and proposing future research directions for improved catalyst design.
The pharmacological and toxic actions of raw Fructus Psoraleae and its salt-baked, and improved salt-baked products were comparatively studied. The leucogenic action of the improved salt-baked product was more effective than that of the original salt-baked one. But no significant difference in antidiarrheal or antiandrogenoid effect was found between the two salt-baked products. The toxicity(LD50 and the injury on kidney) of the improved salt-baked product was lower than that of the salt-baked. one. The results indicate that this improved processing method would contribute to increasing the efficacy and decreasing the toxicity of Fructus Psoraleae.
Butyl butyrate is a short-chain fatty acid ester (C8) with a fruity aroma. It has broad prospects in the fields of foods, cosmetics and biofuels. At present, butyl butyrate is produced by chemical synthesis in the industry, but it is highly dependent on petroleum-based products. The growing concerns regarding the future scarcity of fossil fuels have been strongly promoted the transition from traditional fossil fuels and products to renewable bioenergy and biochemicals. Therefore, it is necessary to develop a green biochemical technology to replace traditional petroleum-based materials. In recent years, microorganisms such as Escherichia coli and Clostridium have been engineered to serve as cell factories for the sustainable one-pot production of short-chain fatty acid esters, including butyl butyrate. This opinion highlights the recent development in the use of lipases and alcohol acyltransferases (AATs) for butyl butyrate production in microbial fermentation, as well as future perspectives.
As a renewable and clean energy carrier, the production of biohydrogen from low-value feedstock such as lignocellulose has increasingly garnered interest. The NADH-dependent reduced ferredoxin:NADP+ oxidoreductase (NfnAB) complex catalyzes electron transfer between reduced ferredoxin and NAD(P)+, which is critical for production of NAD(P)H-dependent products such as hydrogen and ethanol. In this study, the effects on end-product formation of deletion of nfnAB from Thermoanaerobacterium aotearoense SCUT27 were investigated.Compared with the parental strain, the NADH/NAD+ ratio in the ∆nfnAB mutant was increased. The concentration of hydrogen and ethanol produced increased by (41.1 ± 2.37)% (p < 0.01) and (13.24 ± 1.12)% (p < 0.01), respectively, while the lactic acid concentration decreased by (11.88 ± 0.96)% (p < 0.01) when the ∆nfnAB mutant used glucose as sole carbon source. No obvious inhibition effect was observed for either SCUT27 or SCUT27/∆nfnAB when six types of lignocellulose hydrolysate pretreated with dilute acid were used for hydrogen production. Notably, the SCUT27/∆nfnAB mutant produced 190.63-209.31 mmol/L hydrogen, with a yield of 1.66-1.77 mol/mol and productivity of 12.71-13.95 mmol/L h from nonsterilized rice straw and corn cob hydrolysates pretreated with dilute acid.The T. aotearoense SCUT27/∆nfnAB mutant showed higher hydrogen yield and productivity compared with those of the parental strain. Hence, we demonstrate that deletion of nfnAB from T. aotearoense SCUT27 is an effective approach to improve hydrogen production by redirecting the electron flux, and SCUT27/∆nfnAB is a promising candidate strain for efficient biohydrogen production from lignocellulosic hydrolysates.