Bacterial meningitis is associated with high rates of morbidity and mortality, despite advances in antibiotic therapy. Meningitis caused by Streptococcus pneumoniae is associated with a particularly high incidence of neurological sequelae including deficits resulting from damage to the hippocampus. Previous studies have documented that in neonatal rats with experimental pneumococcal meningitis, cells in the subgranular layer of the dentate gyrus undergo apoptosis. The aim of the present study was to define in more detail the nature of the dying cells in the dentate gyrus. Using bromodeoxyuridine labeling at different times before infection combined with immunocytochemistry, we identified the vulnerable cells as those which underwent mitosis 6-10 days before infection. A majority of these cells are of neuronal lineage. Thus, immature neuronal cells several days after the last cell division are preferentially triggered into apoptosis during pneumococcal meningitis. The loss of these cells may contribute to the long-lasting impairment of hippocampal function identified in animal models and in humans after bacterial meningitis.
Brain-derived neurotrophic factor (BDNF) blocks activation of caspase-3, reduces translocation of apoptosis-inducing factor (AIF), attenuates excitotoxicity of glutamate, and increases antioxidant enzyme activities. The mechanisms of neuroprotection suggest that BDNF may be beneficial in bacterial meningitis.To assess a potentially beneficial effect of adjuvant treatment with BDNF in bacterial meningitis, 11-day-old infant rats with experimental meningitis due to Streptococcus pneumoniae or group B streptococci (GBS) were randomly assigned to receive intracisternal injections with either BDNF (3 mg/kg) or equal volumes (10 mu L) of saline. Twenty-two hours after infection, brains were analyzed, by histomorphometrical examination, for the extent of cortical and hippocampal neuronal injury.Compared with treatment with saline, treatment with BDNF significantly reduced the extent of 3 distinct forms of brain cell injury in this disease model: cortical necrosis in meningitis due to GBS (median, 0.0% [range, 0.0%-33.7%] vs. 21.3% [range, 0.0%-55.3%]; P<.03), caspase-3-dependent cell death in meningitis due to S. pneumoniae (median score, 0.33 [range, 0.0-1.0] vs. 1.10 [0.10-1.56]; P<.05), and caspase-3-independent hippocampal cell death in meningitis due to GBS (median score, 0 [range, 0-2] vs. 0.88 [range, 0-3.25]; P<.02). The last form of injury was associated with nuclear translocation of AIF.BDNF efficiently reduces multiple forms of neuronal injury in bacterial meningitis and may hold promise as adjunctive therapy for this disease.