This letter describes dynamic self-assembly of two-component rotors floating at the interface between liquid and air into simple, reconfigurable mechanical systems (“machines”). The rotors are powered by an external, rotating magnetic field, and their positions within the interface are controlled by: (i) repulsive hydrodynamic interactions between them and (ii) by localized magnetic fields produced by an array of small electromagnets located below the plane of the interface. The mechanical functions of the machines depend on the spatiotemporal sequence of activation of the electromagnets.
Organic synthetic reactions are treated as a connected network so that the mechanism by which organic chemistry evolved can be studied. In their Communication on page 7263 ff., B. A. Grzybowski and co‐workers analyze organic syntheses reported between 1850 and 2004, thus revealing the architecture and evolution of the synthesis of molecules, and discuss the application of this technique to the chemical industry. The cover picture shows a typical “hub” in a network of organic chemistry.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
A molecular pentafoil knot and doubly and triply entwined [2]catenanes based on circular Fe(II) double helicate scaffolds bind halide anions in their central cavities through electrostatic and CH···X(-) hydrogen-bonding interactions. The binding is up to (3.6 ± 0.2) × 10(10) M(-1) in acetonitrile (for pentafoil knot [2·Cl](PF6)9), making these topologically complex host molecules some of the strongest synthetic noncovalent binders of halide anions measured to date, comparable in chloride ion affinity to silver salts.
The purposes of the Lawrence Livermore National Laboratory Environmental Report 2008 are to record Lawrence Livermore National Laboratory's (LLNL's) compliance with environmental standards and requirements, describe LLNL's environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites - the Livermore site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL's Environmental Protection Department. Submittal of the report satisfies requirements under DOE Order 231.1A, Environmental Safety and Health Reporting, and DOE Order 5400.5, Radiation Protection of the Public and Environment. The report is distributed electronically and is available at https://saer.lln.gov/, the website for the LLNL annual environmental report. Previous LLNL annual environmental reports beginning in 1994 are also on the website. Some references in the electronic report text are underlined, which indicates that they are clickable links. Clicking on one of these links will open the related document, data workbook, or website that it refers to. The report begins with an executive summary, which provides the purpose of the report and an overview of LLNL's compliance and monitoring results. The first three chapters provide background information: Chapter 1 is an overview of the location, meteorology, and hydrogeology of the two LLNL sites; Chapter 2 is a summary of LLNL's compliance with environmental regulations; and Chapter 3 is a description of LLNL's environmental programs with an emphasis on the Environmental Management System including pollution prevention. The majority of the report covers LLNL's environmental monitoring programs and monitoring data for 2008: effluent and ambient air (Chapter 4); waters, including wastewater, storm water runoff, surface water, rain, and groundwater (Chapter 5); and terrestrial, including soil, sediment, vegetation, foodstuff, ambient radiation, and special status wildlife and plants (Chapter 6). Complete monitoring data, which are summarized in the body of the report, are provided in Appendix A. The remaining three chapters discuss the radiological impact on the public from LLNL operations (Chapter 7), LLNL's groundwater remediation program (Chapter 8), and quality assurance for the environmental monitoring programs (Chapter 9). The report uses Systeme International units, consistent with the federal Metric Conversion Act of 1975 and Executive Order 12770, Metric Usage in Federal Government Programs (1991). For ease of comparison to environmental reports issued prior to 1991, dose values and many radiological measurements are given in both metric and U.S. customary units. A conversion table is provided in the glossary. The report is the responsibility of LLNL's Environmental Protection Department. Monitoring data were obtained through the combined efforts of the Environmental Protection Department; Environmental Restoration Department; Physical and Life Sciences Environmental Monitoring Radiation Laboratory; and the Hazards Control Department.
Arrays of planar, Fresnel-like microlenses are prepared by a spontaneous chemical process of periodic precipitation (PP) occurring in a thin layer of a dry gel, and initiated by wet stamping. The PP lenses focus white light more efficiently than the conventional Fresnel zone plates of similar dimensions. Nanoscale topographies of the micropatterned gels can be replicated into transparent elastomers, and used for focusing based on optical path differences. Experimental observations for both types of structures are in agreement with the Fresnel diffraction calculations.
Doubly-entwined interlocked rings also known as Solomon's knots, are a common motif in Celtic art and stonework, such as the examples from St Magnus Cathedral, Orkney, shown in the picture. In their Communication on page 6464 ff., D. A. Leigh and co-workers report on the use of a tetrameric circular helicate to synthesize a molecular Solomon's knot. The one-pot synthesis assembles four iron(II) cations and four bis(aldehyde) and four bis(amine) building blocks to generate the two interwoven 68-membered-ring macrocycles in 75 % yield.