Formation of membrane-less organelles via liquid-liquid phase separation is one way cells meet the biological requirement for spatiotemporal regulation of cellular components and reactions. Recently, tau, a protein known for its involvement in Alzheimer's disease and other tauopathies, was found to undergo liquid-liquid phase separation making it one of several proteins associated with neurodegenerative diseases to do so. Here, we demonstrate that tau forms dynamic liquid droplets in vitro at physiological protein levels upon molecular crowding in buffers that resemble physiological conditions. Tau droplet formation is significantly enhanced by disease-associated modifications, including the AT8 phospho-epitope and the P301L tau mutation linked to an inherited tauopathy. Moreover, tau droplet dynamics are significantly reduced by these modified forms of tau. Extended phase separation promoted a time-dependent adoption of toxic conformations and oligomerization, but not filamentous aggregation. P301L tau protein showed the greatest oligomer formation following extended phase separation. These findings suggest that phase separation of tau may facilitate the formation of non-filamentous pathogenic tau conformations.
Bidirectional transport of cargos along the axon is critical for maintaining functional synapses, neural connectivity, and healthy neurons. Axonal transport is disrupted in multiple neurodegenerative diseases, and projection neurons are particularly vulnerable because of the need to transport cellular materials over long distances and sustain substantial axonal mass. Pathological modifications of several disease-related proteins negatively affect transport, including tau, amyloid-β, α-synuclein, superoxide dismutase, and huntingtin, providing a potential common mechanism by which pathological proteins exert toxicity in disease. Methods to study these toxic mechanisms are necessary to understand neurodegenerative disorders and identify potential therapeutic interventions. Here, cultured primary rodent hippocampal neurons are co-transfected with multiple plasmids to study the effects of pathological proteins on fast axonal transport using live-cell confocal imaging of fluorescently-tagged cargo proteins. We begin with the harvest, dissociation, and culturing of primary hippocampal neurons from rodents. Then, we co-transfect the neurons with plasmid DNA constructs to express fluorescent-tagged cargo protein and wild-type or mutant tau (used as an exemplar of pathological proteins). Axons are identified in live cells using an antibody that binds an extracellular domain of neurofascin, an axon initial segment protein, and an axonal region of interest is imaged to measure fluorescent cargo transport. Using KymoAnalyzer, a freely available ImageJ macro, we extensively characterize the velocity, pause frequency, and directional cargo density of axonal transport, all of which may be affected by the presence of pathological proteins. Through this method, we identify a phenotype of increased cargo pause frequency associated with the expression of pathological tau protein. Additionally, gene-silencing shRNA constructs can be added to the transfection mix to test the role of other proteins in mediating transport disruption. This protocol is easily adaptable for use with other neurodegenerative disease-related proteins and is a reproducible method to study the mechanisms of how those proteins disrupt axonal transport.
Aging is the primary risk factor for Alzheimer's disease (AD) and related disorders (ADRDs). Tau aggregation is a hallmark of AD and other tauopathies. Even in normal aging, tau aggregation is found in brains, but in disease states, significantly more aggregated tau is present in brain regions demonstrating synaptic degeneration and neuronal loss. It is unclear how tau aggregation and aging interact to give rise to the phenotypes observed in disease states. Most AD/ADRD animal models have focused on late stages, after significant tau aggregation has occurred. There are fewer where we can observe the early aggregation events and progression during aging. In an attempt to address this gap, we created
More than 50 different intronic and exonic autosomal dominant mutations in the tau gene have been linked to the neurodegenerative disorder frontotemporal dementia with Parkinsonism linked to chromosome-17 (FTDP-17). Although the pathological and clinical presentation of this disorder is heterogeneous among patients, the deposition of tau as pathological aggregates is a common feature. Collectively, FTDP-17 mutations have been shown to alter tau's ability to stabilize microtubules, enhance its aggregation, alter mRNA splicing, or induce its hyperphosphorylation, among other effects. Previous in vitro studies from our lab revealed that these mutations differ markedly from each other in the longest 2N4R isoform of tau. However, it is not entirely known whether the effect of a single mutation varies when compared between different isoforms of tau. Differences in the isoelectric points of the N-terminal region of tau isoforms lead to changes in their biochemical properties, raising the possibility that isoforms could also be disproportionately affected by disease-related mechanisms such as mutations. We therefore performed a comparative study of three FTDP-17 mutations present in different regions of tau (R5L, P301L, and R406W) in the three 4R isoforms of tau. We observed significant differences in the effect these mutations exert on the total amount and kinetics of aggregation, aggregate length distributions, and microtubule stabilizing propensity of 4R tau isoforms for all three selected mutants. These results demonstrate that different combinations of FTDP-17 mutations and tau isoforms are functionally distinct and could have important implications for our understanding of disease and animal models of tauopathies.
The microtubule-associated protein tau exists as six isoforms created through the splicing of the second, third, and tenth exons. The isoforms are classified by their number of N-terminal exons (0N, 1N, or 2N) and by their number of microtubule-binding repeat regions (3R or 4R). Hyperphosphorylated isoforms accumulate in insoluble aggregates in Alzheimer's disease and other tauopathies. These neurodegenerative diseases can be categorized based on the isoform content of the aggregates they contain. Hyperphosphorylated tau has the general characteristics of an upward electrophoretic shift, decreased microtubule binding, and an association with aggregation. Previously we have shown that a combination of seven pseudophosphorylation mutations at sites phosphorylated by GSK-3β, referred to as 7-Phos, induced several of these characteristics in full-length 2N4R tau and led to the formation of fewer but longer filaments. We sought to determine whether the same phosphorylation pattern could cause differential effects in the other tau isoforms, possibly through varied conformational effects. Using in vitro techniques, we examined the electrophoretic mobility, aggregation properties, and microtubule stabilization of all isoforms and their pseudophosphorylated counterparts. We found that pseudophosphorylation affected each isoform, but in several cases certain isoforms were affected more than others. These results suggest that hyperphosphorylation of tau isoforms could play a major role in determining the isoform composition of tau aggregates in disease.
Pathologic tau modifications are characteristic of Alzheimer's disease and related dementias, but mechanisms of tau toxicity continue to be debated. Inherited mutations in tau cause early onset frontotemporal lobar dementias (FTLD-tau) and are commonly used to model mechanisms of tau toxicity in tauopathies. Previous work in the isolated squid axoplasm model demonstrated that several pathogenic forms of tau inhibit axonal transport through a mechanism involving activation of protein phosphatase 1 (PP1). Here, we determined that P301L and R5L FTLD mutant tau proteins elicit a toxic effect on axonal transport as monomeric proteins. We evaluated interactions of wild-type or mutant tau with specific PP1 isoforms (α, β, and γ) to examine how the interaction contributes to this toxic effect using primary rat hippocampal neurons from both sexes. Pull-down and bioluminescence resonance energy transfer experiments revealed selective interactions of wild-type tau with PP1α and PP1γ isoforms, but not PP1β, which were significantly increased by the P301L tau mutation. The results from proximity ligation assays confirmed the interaction in primary hippocampal neurons. Moreover, expression of FTLD-linked mutant tau in these neurons enhanced levels of active PP1, also increasing the pausing frequency of fluorescently labeled vesicles in both anterograde and retrograde directions. Knockdown of PP1γ, but not PP1α, rescued the cargo-pausing effects of P301L and R5L tau, a result replicated by deleting a phosphatase-activating domain in the amino terminus of P301L tau. These findings support a model of tau toxicity involving aberrant activation of a specific PP1γ-dependent pathway that disrupts axonal transport in neurons. SIGNIFICANCE STATEMENT Tau pathology is closely associated with neurodegeneration in Alzheimer's disease and other tauopathies, but the toxic mechanisms remain a debated topic. We previously proposed that pathologic tau forms induce dysfunction and degeneration through aberrant activation of a PP1-dependent pathway that disrupts axonal transport. Here, we show that tau directly interacts with specific PP1 isoforms, increasing levels of active PP1. Pathogenic tau mutations enhance this interaction, further increasing active PP1 levels and impairing axonal transport in isolated squid axoplasm and primary hippocampal neurons. Mutant-tau-mediated impairment of axonal transport was mediated by PP1γ and a phosphatase-activating domain located at the amino terminus of tau. This work has important implications for understanding and potentially mitigating tau-mediated neurotoxicity in tauopathies.
Tauopathies are a diverse group of diseases featuring progressive dying back neurodegeneration of specific neuronal populations in association with accumulation of abnormal forms of the microtubule-associated protein tau. It is well established that the clinical symptoms characteristic of tauopathies correlate with deficits in synaptic function and neuritic connectivity early in the course of disease, but mechanisms underlying these critical pathogenic events remain largely unknown. Biochemical in vitro evidence fueled the widespread notion that microtubule stabilization represents tau's primary biological role and that the marked atrophy of neurites observed in tauopathies results from loss of microtubule stability. However, this notion contrasts with the mild phenotype associated with tau deletion. Instead, an analysis of cellular hallmarks common to different tauopathies, including aberrant patterns of protein phosphorylation and early degeneration of axons, suggests that alterations in kinase-based signaling pathways and deficits in axonal transport associated with such alterations contribute to the loss of neuronal connectivity triggered by pathogenic forms of tau. Here, we review a body of literature providing evidence that axonal pathology represents an early and common pathogenic event among human tauopathies. Observations of axonal degeneration in animal models of specific tauopathies are discussed and similarities to human disease highlighted. Finally, we discuss potential mechanistic pathways other than microtubule destabilization by which disease-related forms of tau may promote axonopathy.