The tumor suppressor Trp53 (p53) inhibits cell growth after acute stress by regulating gene transcription. The mammalian genome contains hundreds of p53-binding sites. However, whether p53 participates in the regulation of cardiac tissue homeostasis under normal conditions is not known. To examine the physiologic role of p53 in adult cardiomyocytes in vivo, Cre-loxP-mediated conditional gene targeting in adult mice was used. Genome-wide transcriptome analyses of conditional heart-specific p53 knockout mice were performed. Genome-wide annotation and pathway analyses of >5,000 differentially expressed transcripts identified many p53-regulated gene clusters. Correlative analyses identified >20 gene sets containing more than 1,000 genes relevant to cardiac architecture and function. These transcriptomic changes orchestrate cardiac architecture, excitation-contraction coupling, mitochondrial biogenesis, and oxidative phosphorylation capacity. Interestingly, the gene expression signature in p53-deficient hearts confers resistance to acute biomechanical stress. The data presented here demonstrate a role for p53, a previously unrecognized master regulator of the cardiac transcriptome. The complex contributions of p53 define a biological paradigm for the p53 regulator network in the heart under physiological conditions.
IntroductionVenoarterial extracorporeal membrane oxygenation (VA-ECMO) is a prevailing option for the management of severe early graft dysfunction. This systematic review and individual patient data (IPD) meta-analysis aims to evaluate (1) mortality, (2) rates of major complications, (3) prognostic factors, and (4) the effect of different VA-ECMO strategies on outcomes in adult heart transplant (HT) recipients supported with VA-ECMO.Methods and ResultsWe conducted a systematic search and included studies of adults (≥18 years) who received VA-ECMO during their index hospitalization after HT and reported on mortality at any timepoint. We pooled data using random effects models. To identify prognostic factors, we analysed IPD using mixed effects logistic regression. We assessed the certainty in the evidence using the GRADE framework. We included 49 observational studies of 1477 patients who received VA-ECMO after HT, of which 15 studies provided IPD for 448 patients. There were no differences in mortality estimates between IPD and non-IPD studies. The short-term (30-day/in-hospital) mortality estimate was 33% (moderate certainty, 95% confidence interval [CI] 28%–39%) and 1-year mortality estimate 50% (moderate certainty, 95% CI 43%–57%). Recipient age (odds ratio 1.02, 95% CI 1.01–1.04) and prior sternotomy (OR 1.57, 95% CI 0.99–2.49) are associated with increased short-term mortality. There is low certainty evidence that early intraoperative cannulation and peripheral cannulation reduce the risk of short-term death.ConclusionsOne-third of patients who receive VA-ECMO for early graft dysfunction do not survive 30 days or to hospital discharge, and one-half do not survive to 1 year after HT. Improving outcomes will require ongoing research focused on optimizing VA-ECMO strategies and care in the first year after HT.
Left ventricular (LV) distention, a recognized complication in patients supported with veno-arterial extracorporeal membrane oxygenation (VA-ECMO) for refractory cardiogenic shock, can lead to pulmonary edema, increased myocardial oxygen consumption, and LV thrombus formation. Atrial septostomy was examined as a management strategy for LV distension.Of 72 patients supported with VA-ECMO, seven patients underwent atrial septostomy through a trans-septal approach. The primary indication for atrial septostomy was refractory pulmonary edema.The mean time from ECMO initiation to LA decompression was 1.3 days (range 0-2 days). There was a 100% procedural success rate with improvement in pulmonary edema. Five patients survived to discharge with one patient exhibiting recovery of biventricular function, two patients were transplanted, one patient was decannulated, and one patient was transitioned to long-term durable ventricular assist device. Two patients died, one from multi-organ failure and one with severe anoxic brain injury.Atrial septostomy is an effective method of LV decompression that can be performed safely with a high success rate.