rVIII-SingleChain (CSL627), a novel recombinant coagulation factor VIII (FVIII), is under investigation in a phase I/III clinical programme (AFFINITY) for the treatment of haemophilia A. Non-clinical studies were conducted to investigate the pharmacokinetic/pharmacodynamic profile of rVIII-SingleChain in comparison with full-length recombinant FVIII.Binding affinity of rVIII-SingleChain for von Willebrand factor was investigated by surface plasmon resonance analysis. The pharmacokinetic profile of rVIII-SingleChain was compared with a marketed full-length recombinant FVIII concentrate (Advate(®)) in haemophilia A mice, von Willebrand factor knock-out mice, Crl:CD (SD) rats, rabbits and cynomolgus monkeys. Systemic FVIII activity or antigen levels were recorded. Procoagulant activity was measured in an FeCl3-induced arterial occlusion model and by recording thrombin generation activity (ex vivo) after administration of 200-250 IU/kg rVIII-SingleChain or full-length FVIII to haemophilia A mice.rVIII-SingleChain displayed a high affinity for von Willebrand factor (KD=44 pM vs. 139 pM for full-length recombinant FVIII). In all animal species tested, rVIII-SingleChain had more favourable pharmacokinetic properties than full-length recombinant FVIII: clearance was decreased and area under the curve and terminal half-life were enhanced vs. full-length recombinant FVIII, while in vivo recovery and volume of distribution were equivalent. rVIII-SingleChain showed a prolonged thrombin generation potential and prolonged procoagulant activity vs. full-length recombinant FVIII in an FeCl3-induced arterial occlusion model.rVIII-SingleChain had a higher affinity for von Willebrand factor than full-length recombinant FVIII and displayed favourable pharmacokinetic/pharmacodynamic properties in non-clinical models.
Recombinant factor VIIa (rFVIIa) is approved for use in controlling bleeding episodes in people with hemophilia who have developed inhibitors to replacement therapy. Due to its short half-life (t½), frequent injections are required, limiting its use as a prophylactic treatment. A novel, recombinant fusion protein linking coagulation factor VIIa with albumin (rVIIa-FP) has been developed to extend the t(½) of rFVIIa.The aim of our studies was to investigate the pharmacokinetic/pharmacodynamic characteristics of rVIIa-FP in preclinical animal species.Pharmacokinetic (PK) parameters were derived after single intravenous dosing in hemophilia A mice, rats, rabbits and monkeys. PK analysis was based on human FVII plasma levels determined by measuring FVII antigen levels by ELISA in mice and rats, and FVIIa activity using STACLOT® VIIa-rTF in rabbits and monkeys. Induction of thrombin generation was investigated in mice, while hemostatic activity was assessed by thrombus formation in rabbits.Compared with rFVIIa, rVIIa-FP displayed a prolonged t(½), enhanced in vivo recovery and reduced clearance in all species investigated. In mice, 16 h after treatment with rVIIa-FP, thrombin levels were quantifiable, indicating prolonged efficacy, whereas values had approached baseline at this time after treatment with rFVIIa. After 12 h, hemostatic efficacy was negligible in rFVIIa-treated rabbits, but sustained in animals receiving rVIIa-FP.These studies indicate that the longer t(½) of rVIIa-FP compared with rFVIIa translates into extended activity. These findings suggest that rVIIa-FP has the potential to be administered less frequently than rFVIIa-containing concentrates in clinical use.
The preclinical efficacy and safety of rVIII-SingleChain (CSL627), a novel recombinant single-chain factor VIII, was assessed in a series of animal studies.In the tail-clip bleeding model, hemophilia A mice were injected with escalating doses (1-150 IU/kg) of rVIII-SingleChain, B-domain deleted (BDD) rFVIII (ReFacto AF(®)), or full-length rFVIII products (Advate(®), Helixate(®)). Total blood loss and the percentage of animals in which hemostasis occurred were assessed in this observer-blinded, randomized study. In a second non-randomized study in hemophilia A mice, thromboelastographic analysis, thrombin generation, and activated partial thromboplastin time assays were performed. General safety and toxicity were assessed in three animal species, including determination of the prothrombotic potential of rVIII-SingleChain in a rabbit venous thrombosis model.Under acute bleeding conditions, the effect of rVIII-SingleChain on total blood loss and hemostasis was indistinguishable from BDD and full-length rFVIII. rVIII-SingleChain and full-length rFVIII (both 20 IU/kg) corrected thromboelastographic parameters, activated partial thromboplastin time, and thrombin generation to a similar degree in hemophilia A mice. In a thrombosis model, the effect of rVIII-SingleChain on thrombus incidence was non-significant and comparable to BDD rFVIII at doses up to 500 IU/kg. Treatment with rVIII-SingleChain did not cause anaphylactic reaction or local intolerance in safety and toxicity studies, and demonstrated an excellent overall safety profile.rVIII-SingleChain showed convincing hemostatic efficacy and excellent tolerability in animal studies, warranting continued investigation in human Phase I/III trials (AFFINITY).