The recurrence rate for severe intrauterine adhesions is as high as 60%, and there is still lack of effective prevention and treatment. Inspired by the nature of uterus, we have developed a bilayer scaffold (ECM-SPS) with biomimetic heterogeneous features and extracellular matrix (ECM) microenvironment of the uterus. As proved by subtotal uterine reconstruction experiments, the mechanical and antiadhesion properties of the bilayer scaffold could meet the requirement for uterine repair. With the modification with tissue-specific cell-derived ECM, the ECM-SPS had the ECM microenvironment signatures of both the endometrium and myometrium and exhibited the property of inducing stem cell-directed differentiation. Furthermore, the ECM-SPS has recruited more endogenous stem cells to promote endometrial regeneration at the initial stage of repair, which was accompanied by more smooth muscle regeneration and a higher pregnancy rate. The reconstructed uterus could also sustain normal pregnancy and live birth. The ECM-SPS may thereby provide a potential treatment for women with severe intrauterine adhesions.
Characterized by their pivotal roles in cell-to-cell communication, cell proliferation, and immune regulation during tissue repair, exosomes have emerged as a promising avenue for "cell-free therapy" in clinical applications. Hydrogels, possessing commendable biocompatibility, degradability, adjustability, and physical properties akin to biological tissues, have also found extensive utility in tissue engineering and regenerative repair. The synergistic combination of exosomes and hydrogels holds the potential not only to enhance the efficiency of exosomes but also to collaboratively advance the tissue repair process. This review has summarized the advancements made over the past decade in the research of hydrogel-exosome systems for regenerating various tissues including skin, bone, cartilage, nerves and tendons, with a focus on the methods for encapsulating and releasing exosomes within the hydrogels. It has also critically examined the gaps and limitations in current research, whilst proposed future directions and potential applications of this innovative approach.
Bone regeneration following trauma, tumor resection, infection, or congenital disease is challenging. Diabetes mellitus (DM) is a metabolic disease characterized by hyperglycemia. It can result in complications affecting multiple systems including the musculoskeletal system. The increased number of diabetes-related fractures poses a great challenge to clinical specialties, particularly orthopedics and dentistry. Various pathological factors underlying DM may directly impair the process of bone regeneration, leading to delayed or even non-union of fractures. This review summarizes the mechanisms by which DM hampers bone regeneration, including immune abnormalities, inflammation, reactive oxygen species (ROS) accumulation, vascular system damage, insulin/insulin-like growth factor (IGF) deficiency, hyperglycemia, and the production of advanced glycation end products (AGEs). Based on published data, it also summarizes bone repair strategies in diabetic conditions, which include immune regulation, inhibition of inflammation, reduction of oxidative stress, promotion of angiogenesis, restoration of stem cell mobilization, and promotion of osteogenic differentiation, in addition to the challenges and future prospects of such approaches.
Uncontrolled bleeding remains as a leading cause of death in surgical, traumatic, and emergency situations. Management of the hemorrhage and development of hemostatic materials are paramount for patient survival. Owing to their inherent biocompatibility, biodegradability and bioactivity, biopolymers such as polysaccharides and polypeptides have been extensively researched and become a focus for the development of next-generation hemostatic materials. The construction of novel hemostatic materials requires in-depth understanding of the physiological hemostatic process, fundamental hemostatic mechanisms, and the effects of material chemistry/physics. Herein, we have recapitulated the common hemostatic strategies and development status of biopolymer-based hemostatic materials. Furthermore, the hemostatic mechanisms of various molecular structures (components and chemical modifications) are summarized from a microscopic perspective, and the design based on them are introduced. From a macroscopic perspective, the design of various forms of hemostatic materials, e.g., powder, sponge, hydrogel and gauze, is summarized and compared, which may provide an enlightenment for the optimization of hemostat design. It has also highlighted current challenges to the development of biopolymer-based hemostatic materials and proposed future directions in chemistry design, advanced form and clinical application.
Abstract Rapid and effective control of non‐compressible massive hemorrhage poses a great challenge in first‐aid and clinical settings. Herein, a biopolymer‐based powder is developed for the control of non‐compressible hemorrhage. The powder is designed to facilitate rapid hemostasis by its excellent hydrophilicity, great specific surface area, and adaptability to the shape of wound, enabling it to rapidly absorb fluid from the wound. Specifically, the powder can undergo sequential cross‐linking based on “click” chemistry and Schiff base reaction upon contact with the blood, leading to rapid self‐gelling. It also exhibits robust tissue adhesion through covalent/non‐covalent interactions with the tissues (adhesive strength: 89.57 ± 6.62 KPa, which is 3.75 times that of fibrin glue). Collectively, this material leverages the fortes of powder and hydrogel. Experiments with animal models for severe bleeding have shown that it can reduce the blood loss by 48.9%. Studies on the hemostatic mechanism also revealed that, apart from its physical sealing effect, the powder can enhance blood cell adhesion, capture fibrinogen, and synergistically induce the formation of fibrin networks. Taken together, this hemostatic powder has the advantages for convenient preparation, sprayable use, and reliable hemostatic effect, conferring it with a great potential for the control of non‐compressible hemorrhage.