Reduced binocularity is a prominent feature of amblyopia and binocular cues are thought to be important for prehension. We examine prehension in individuals with amblyopia when the target-object was flanked, thus mimicking everyday prehension.Amblyopes (n = 20, 36.4 ± 11.7 years; 6 anisometropic, 3 strabismic, 11 mixed) and visually-healthy controls (n = 20, 27.5 ± 6.3 years) reached forward, grasped, and lifted a cylindrical target-object that was flanked with objects either (lateral) side of the target, or in front and behind it in depth. Only six amblyopes (30%) had measurable stereoacuity. Trials were completed in binocular and monocular viewing, using the better eye in amblyopic participants.Compared with visual normals, amblyopes displayed a longer overall movement time (P = 0.031), lower average reach velocity (P = 0.021), smaller maximum aperture (P = 0.007), and a longer duration between object contact and lift (P = 0.003). Differences between groups were more apparent when the flankers were in front and behind, compared with either side, as evidenced by significant group-by-flanker configuration interactions for reach duration (P < 0.001), size and timing of maximum aperture (P ≤ 0.009), end-of-reach to object-contact (P < 0.001), and object-contact to lift (P = 0.044), suggesting that amblyopic deficits are greatest when binocular cues are richest. Both groups demonstrated a significant binocular advantage, in that in both groups performance was worse for monocular compared with binocular viewing, but interestingly, amblyopic deficits in binocular viewing largely persisted during monocular viewing with the better eye.These results suggest that amblyopes either display considerable residual binocularity or that they have adapted to make good use of their abnormal binocularity.
Gait during obstacle negotiation is adapted in visually normal subjects whose vision is temporarily and unilaterally blurred or occluded. This study was conducted to examine whether gait parameters in individuals with long-standing deficient stereopsis are similarly adapted.Twelve visually normal subjects and 16 individuals with deficient stereopsis due to amblyopia and/or its associated conditions negotiated floor-based obstacles of different heights (7-22 cm). Trials were conducted during binocular viewing and monocular occlusion. Analyses focused on foot placement before the obstacle and toe clearance over it.Across all viewing conditions, there were significant group-by-obstacle height interactions for toe clearance (P < 0.001), walking velocity (P = 0.003), and penultimate step length (P = 0.022). Toe clearance decreased (approximately 0.7 cm) with increasing obstacle height in visually normal subjects, but it increased (approximately 1.5 cm) with increasing obstacle height in the stereo-deficient group. Walking velocity and penultimate step length decreased with increasing obstacle height in both groups, but the reduction was more pronounced in stereo-deficient individuals. Post hoc analyses indicated group differences in toe clearance and penultimate step length when negotiating the highest obstacle (P < 0.05).Occlusion of either eye caused significant and similar gait changes in both groups, suggesting that in stereo-deficient individuals, as in visually normal subjects, both eyes contribute usefully to the execution of adaptive gait. Under monocular and binocular viewing, obstacle-crossing performance in stereo-deficient individuals was more cautious when compared with that of visually normal subjects, but this difference became evident only when the subjects were negotiating higher obstacles; suggesting that such individuals may be at greater risk of tripping or falling during everyday locomotion.
Adults with amblyopia ('lazy eye'), long-standing strabismus (ocular misalignment) or both typically do not experience visual symptoms because the signal from weaker eye is given less weight than the signal from its fellow. Here we examine the contribution of the weaker eye of individuals with strabismus and amblyopia with both eyes open and with the deviating eye in its anomalous motor position.The task consisted of a blue-on-yellow detection task along a horizontal line across the central 50 degrees of the visual field. We compare the results obtained in ten individuals with strabismic amblyopia with ten visual normals. At each field location in each participant, we examined how the sensitivity exhibited under binocular conditions compared with sensitivity from four predictions, (i) a model of binocular summation, (ii) the average of the monocular sensitivities, (iii) dominant-eye sensitivity or (iv) non-dominant-eye sensitivity. The proportion of field locations for which the binocular summation model provided the best description of binocular sensitivity was similar in normals (50.6%) and amblyopes (48.2%). Average monocular sensitivity matched binocular sensitivity in 14.1% of amblyopes' field locations compared to 8.8% of normals'. Dominant-eye sensitivity explained sensitivity at 27.1% of field locations in amblyopes but 21.2% in normals. Non-dominant-eye sensitivity explained sensitivity at 10.6% of field locations in amblyopes but 19.4% in normals. Binocular summation provided the best description of the sensitivity profile in 6/10 amblyopes compared to 7/10 of normals. In three amblyopes, dominant-eye sensitivity most closely reflected binocular sensitivity (compared to two normals) and in the remaining amblyope, binocular sensitivity approximated to an average of the monocular sensitivities.Our results suggest a strong positive contribution in habitual viewing from the non-dominant eye in strabismic amblyopes. This is consistent with evidence from other sources that binocular mechanisms are frequently intact in strabismic and amblyopic individuals.
Although their eyes are pointing in different directions, people with long-standing strabismic amblyopia typically do not experience double-vision or indeed any visual symptoms arising from their condition. It is generally believed that the phenomenon of suppression plays a major role in dealing with the consequences of amblyopia and strabismus, by preventing images from the weaker/deviating eye from reaching conscious awareness. Suppression is thus a highly sophisticated coping mechanism. Although suppression has been studied for over 100 years the literature is equivocal in relation to the extent of the retina that is suppressed, though the method used to investigate suppression is crucial to the outcome. There is growing evidence that some measurement methods lead to artefactual claims that suppression exists when it does not.Here we present the results of an experiment conducted with a new method to examine the prevalence, depth and extent of suppression in ten individuals with strabismic amblyopia. Seven subjects (70%) showed no evidence whatsoever for suppression and in the three individuals who did (30%), the depth and extent of suppression was small.Suppression may play a much smaller role in dealing with the negative consequences of strabismic amblyopia than previously thought. Whereas recent claims of this nature have been made only in those with micro-strabismus our results show extremely limited evidence for suppression across the central visual field in strabismic amblyopes more generally. Instead of suppressing the image from the weaker/deviating eye, we suggest the visual system of individuals with strabismic amblyopia may act to maximise the possibilities for binocular co-operation. This is consistent with recent evidence from strabismic and amblyopic individuals that their binocular mechanisms are intact, and that, just as in visual normals, performance with two eyes is better than with the better eye alone in these individuals.