Neutralizing antibodies strongly correlate with protection for COVID-19 vaccines, but the corresponding memory B cells that form to protect against future infection are relatively understudied. Here we examine the effect of prior SARS-CoV-2 infection on the magnitude and phenotype of the memory B cell response to single dose Johnson and Johnson (Ad26.COV2.S) vaccination in South African health care workers. Participants were either naïve to SARS-CoV-2 or had been infected before vaccination. SARS-CoV-2-specific memory B-cells expand in response to Ad26.COV2.S and are maintained for the study duration (84 days) in all individuals. However, prior infection is associated with a greater frequency of these cells, a significant reduction in expression of the germinal center chemokine receptor CXCR5, and increased class switching. These B cell features correlated with neutralization and antibody-dependent cytotoxicity (ADCC) activity, and with the frequency of SARS-CoV-2 specific circulating T follicular helper cells (cTfh). Vaccination-induced effective neutralization of the D614G variant in both infected and naïve participants but boosted neutralizing antibodies against the Beta and Omicron variants only in participants with prior infection. In addition, the SARS-CoV-2 specific CD8+ T cell response correlated with increased memory B cell expression of the lung-homing receptor CXCR3, which was sustained in the previously infected group. Finally, although vaccination achieved equivalent B cell activation regardless of infection history, it was negatively impacted by age. These data show that phenotyping the response to vaccination can provide insight into the impact of prior infection on memory B cell homing, CSM, cTfh, and neutralization activity. These data can provide early signals to inform studies of vaccine boosting, durability, and co-morbidities.
We report the safety and immunogenicity of fractional and full dose Ad26.COV2.S and BNT162b2 in an open label phase 2 trial of participants previously vaccinated with a single dose of Ad26.COV2.S, with 91.4% showing evidence of previous SARS-CoV-2 infection.
Induction of broadly neutralizing antibodies (bNAbs) to HIV and other diverse pathogens will likely require the use of multiple immunogens. An understanding of the dynamics of antibody development to multiple diverse but related antigens would facilitate the rational design of immunization strategies. Here, we characterize, in detail, the development of neutralizing antibodies in three individuals coinfected with several divergent HIV variants. Two of these coinfected individuals developed additive or cross-neutralizing antibody responses. However, interference was observed in the third case, with neutralizing antibody responses to one viral variant arising to the near exclusion of neutralizing responses to the other. Longitudinal characterization of the diversity in the Envelope glycoprotein trimer (Env) structure showed that in the individual who developed the broadest neutralizing antibodies, circulating viruses shared a conserved epitope on the trimer apex that was targeted by cross-neutralizing antibodies. In contrast, in the other two individuals, diversity was distributed across Env. Taken together, these data highlight that multiple related immunogens can result in immune interference. However, they also suggest that immunogen cocktails presenting shared, conserved neutralizing epitopes in a variable background may focus broadly neutralizing antibody responses to these targets.
People living with HIV are at an increased risk of fatal outcome when admitted to hospital for severe COVID-19 compared with HIV-negative individuals. We aimed to assess safety and immunogenicity of the ChAdOx1 nCoV-19 (AZD1222) vaccine in people with HIV and HIV-negative individuals in South Africa.
Abstract Neutralizing antibodies strongly correlate with protection for COVID-19 vaccines, but the corresponding memory B cells that form to protect against future infection are relatively understudied. Here we examine the effect of prior SARS-CoV-2 infection on the magnitude and phenotype of the B cell response to single dose Johnson and Johnson (Ad26.COV2.S) vaccination in South African health care workers. SARS-CoV-2 specific memory responses expand in response to Ad26.COV2.S and are maintained for the study duration (84 days) in all individuals. However, prior infection is associated with a greater frequency of these cells, a more prominent germinal center (GC) response, and increased class switched memory (CSM). These B cell features correlated with both neutralization and antibody-dependent cytotoxicity (ADCC) activity, and with the frequency of SARS-CoV-2 specific circulating T follicular helper cells (cTfh). In addition, the SARS-CoV-2 specific CD8+ T cell response correlated with increased memory B cell lung-homing, which was sustained in the infected group. Finally, although vaccination achieved equivalent B cell activation regardless of infection history, it was negatively impacted by age. These data show that phenotyping the B cell response to vaccination can provide mechanistic insight into the impact of prior infection on GC homing, CSM, cTfh, and neutralization activity. These data can provide early signals and mechanistic understanding to inform studies of vaccine boosting, durability, and co-morbidities.
Abstract Coronavirus disease 2019 (COVID-19) is a public health emergency of international concern 1 . People living with HIV (PLWH) are at increased risk for adverse COVID-19 outcomes compared with HIV-negative individuals 2-5 , and are a high-risk group for COVID-19 prevention 4 . The ChAdOx1 nCoV-19 (AZD1222) vaccine has demonstrated safety and efficacy against COVID-19 in clinical trials 6-8 . To date, there are no reports on the safety and immunogenicity of this, or any COVID-19 vaccine, in PLWH, and reports on the immunogenicity of COVID-19 vaccines in Africa are limited 9 . Here, we show comparable safety and immunogenicity of two doses of ChAdOx1 nCoV-19 between PLWH and HIV-negative individuals in South Africa. Furthermore, in PLWH previously exposed to SARS-CoV-2, antibody responses increased substantially from baseline following a priming dose, with modest increases after a booster dose. Full-length spike and receptor-binding domain IgG geometric mean concentrations after a single dose of ChAdOx1 nCoV-19 in PLWH previously exposed to SARS-CoV-2 were 6.49–6.84-fold higher than after two doses in those who were SARS-CoV-2 naïve at enrollment. Neutralizing antibody responses were consistent with the antibody-binding responses. This is the first report of a COVID-19 vaccine specific to PLWH, and specific to Africa, and demonstrates favorable safety and immunogenicity of ChAdOx1 nCoV-19 in PLWH.
Background Development of an efficacious HIV-1 vaccine able to elicit the production of broadly neutralizing antibodies (nAbs), capable of retaining potent activity against a diverse panel of viral isolates remains a significant challenge. The evolutionary forces that shape envelope and ensuing nAb and non-neutralizing antibodies in HIV-1 subtype C are incompletely understood and these two parameters have been rarely studied concurrently.
Abstract The emergence of SARS-CoV-2 variants, such as 501Y.V2, with immune evasion mutations in the spike has resulted in reduced efficacy of several COVID-19 vaccines. However, the efficacy of the Ad26.COV2.S vaccine, when tested in South Africa after the emergence of 501Y.V2, was not adversely impacted. We therefore assessed the binding and neutralization capacity of n=120 South African sera (from Day 29, post-vaccination) from the Janssen phase 3 study, Ensemble. Spike binding assays using both the Wuhan-1 D614G and 501Y.V2 Spikes showed high levels of cross-reactivity. In contrast, in a subset of 27 sera, we observed significantly reduced neutralization of 501Y.V2 compared to Wuhan-1 D614G, with 22/27 (82%) of sera showing no detectable neutralization of 501Y.V2 at Day 29. These data suggest that even low levels of neutralizing antibodies may contribute to protection from moderate/severe disease. In addition, Fc effector function and T cells may play an important role in protection by this vaccine against 501Y.V2.