Inhibition of the ligand-activated androgen receptor (AR) by antiandrogens plays an important role in the treatment of various hyperandrogenic disorders including prostate cancer. However, the molecular mechanisms of antiandrogen activity in vivo remain unclear. In this study we analyzed the effects of cyproterone acetate (CPA), flutamide (F), and hydroxyflutamide (OHF) on transcriptional activation and chromatin remodeling of the genomically integrated mouse mammary tumor virus (MMTV) promoter. This promoter has provided an excellent model system to study the impact of steroid hormones on transcriptional activation in the context of a defined chromatin structure. The MMTV hormone response element is positioned on a phased nucleosome, which becomes remodeled in response to steroids. We utilized this model system in mouse L-cell fibroblasts that contain a stably integrated MMTV promoter. In these cells, dihydrotestosterone (DHT) induced a large increase of AR protein levels that correlated with transcriptional activation and chromatin remodeling of the MMTV promoter. Coadministration of DHT and CPA or DHT and OHF in these cells inhibited the increase of AR levels, which resulted in a strong blockage of transcriptional activation and chromatin remodeling of the MMTV promoter. In contrast, F had no significant influence on these activities. We conclude that a major portion of the antiandrogenic effects of CPA and OHF in vivo are mediated by the reduction of AR levels.
The integrated mouse mammary tumor virus (MMTV) promoter has provided an excellent model system with which to study the impact of steroid hormones on transcriptional activation in the context of a defined chromatin structure. The hormone response element (HRE) of this promoter is positioned on a phased nucleosome which becomes remodeled in response to steroids. One possible mechanism of chromatin remodeling by steroid receptors could involve recruitment of coactivators which alter the histone acetylation status of the HRE nucleosome. To examine how the androgen receptor (AR) influences transcription and chromatin remodeling and to assess whether changes in histone acetylation are involved in these effects, we determined whether the specific histone deacetylase inhibitor trichostatin A (TSA) influenced basal- and androgen-mediated transcriptional activation of the integrated MMTV promoter in the mouse L-cell fibroblast cell line 29+. These cells harbor the MMTV promoter integrated in the genome and express only one steroid hormone receptor subtype, i.e., the AR. Surprisingly, we found that treatment of the cells with TSA alone had virtually no effect on transcription and chromatin remodeling of the MMTV promoter nor on AR levels. However, pretreatment with TSA augmented the DHT effects on all three parameters. These results suggest that histone acetylation changes at the MMTV B nucleosome per se are not alone sufficient to induce chromatin remodeling and subsequent induction of MMTV transcription. Rather, the histone deacetylase inhibitor TSA exerts a portion of its effect on MMTV chromatin remodeling and transcriptional activation indirectly through increases in AR levels.