Matrix-bound nanovesicles (MBVs) are a recently discovered type of extracellular vesicles (EVs), and they are characterised by a strong adhesion to extracellular matrix structural proteins (ECM) and ECM-derived biomaterials. MBVs contain a highly bioactive and tissue-specific cargo that recapitulates the biological activity of the source ECM. The rich content of MBVs has shown to be capable of potent cell signalling and of modulating the immune system, thus the raising interest for their application in regenerative medicine. Given the tissue-specificity and the youthfulness of research on MBVs, until now they have only been isolated from a few ECM sources. Therefore, the objective of this research was to isolate and identify the presence of MBVs in decellularised bovine pericardium ECM and to characterise their protein content, which is expected to play a major role in their biological potential. The results showed that nanovesicles, corresponding to the definition of recently described MBVs, could be isolated from decellularised bovine pericardium ECM. Moreover, these MBVs were composed of numerous proteins and cytokines, thus preserving a highly potential biological effect. Overall, this research shows that bovine pericardium MBVs show a rich and tissue-specific biological potential.
The distribution of photo-crosslinkable moieties onto a protein backbone can affect a biomaterial's crosslinking behavior, and therefore also its mechanical and biological properties. A profound insight in this respect is essential for biomaterials exploited in tissue engineering and regenerative medicine. In the present work, photo-crosslinkable moieties have been introduced on the primary amine groups of: (i) a recombinant collagen peptide (RCPhC1) with a known amino acid (AA) sequence, and (ii) bovine skin collagen (COL BS) with an unknown AA sequence. The degree of substitution (DS) was quantified with two conventional techniques: an ortho-phthalic dialdehyde (OPA) assay and 1H NMR spectroscopy. However, neither of both provides information on the exact type and location of the modified AAs. Therefore, for the first time, proteomic analysis was evaluated herein as a tool to identify functionalized AAs as well as the exact position of photo-crosslinkable moieties along the AA sequence, thereby enabling an in-depth, unprecedented characterization of functionalized photo-crosslinkable biopolymers. Moreover, our strategy enabled to visualize the spatial distribution of the modifications within the overall structure of the protein. Proteomics has proven to provide unprecedented insight in the distribution of photo-crosslinkable moieties along the protein backbone, undoubtedly contributing to superior functional biomaterial design to serve regenerative medicine.
Diseases occurring to blood vessel are preferentially solved by replacing the vessel by an autologous graft. When it is not available, a synthetic graft is used which has low patency rates for small diameter (<6 mm) vessels. Tissue engineering of blood vessel aims to improve the performance of vascular substitutes. Bioreactors are used in vascular tissue engineering to mimic the mechanical and biochemical environment of blood vessel. A 2D bioreactor was custom made in order to impose a dynamical strain to silicone membrane receiving the collagen cell-based construct. Collagen gels with vascular smooth muscle cells cultured inside were subdued to maturation under dynamical uniaxial stretch regimes at 1Hz for 48 hours. The percentage of deformation encountered by the silicone membrane was measured by ImageJ. Collagen fibrils and porcine smooth muscle cells (PSMC) orientations were assessed by scanning electron microscopy (SEM). Results show that the study of mechanical conditioning on cell activity is an important issue for enhancing the alignment of collagen fibrils.
Stents are cardiovascular implants deployed on atherosclerotic arteries that aid in reopening, sustaining, and avoiding their collapse. Nevertheless, postimplantation complications exist, and the risk of the renewal of the plaque subsists. Therefore, enhanced properties are mandatory requirements for clinics. For that purpose, a novel approach allowing the direct-grafting of bioactive molecules on cobalt-chromium devices (L605) has been developed. This original strategy involves the direct plasma functionalization of metallic surfaces with primary amines (–NH2). These groups act as anchor points to covalently graft biomolecules of interest, herein a peptide derived from CD31 (P23) with proendothelialization and antithrombotic properties. However, the biological activity of the grafted peptide could be impacted by its conformation. For this study, glutaric anhydride (GA), a short chain spacer, and polyethylene glycol (PEG) with antifouling properties were used as linking arms (LAs). The covalent grafting of the CD31 agonist on L605 by different LAs (GA-P23 and PEG-P23) was confirmed by XPS and ToF-SIMS analyses. The biological performance of these functionalized surfaces showed that, compared to the electropolished (EP) alloy, grafting the P23 with both LA increases adhesion and proliferation of endothelial cells (ECs) since day 1: EP = 68 ± 10%, GA-P23 = 101 ± 7%, and PEG-P23 = 106 ± 5% of cell viability. Moreover, ECs formed a complete monolayer at the surface, preventing clot formation (hemoglobin-free >80%). The potential of this plasma-based strategy for cardiovascular applications was confirmed by promoting a fast re-endothelialization, by improving the hemocompatibility of the alloy when coupled with the CD31 agonist and by its transfer onto commercial L605 stents, as confirmed by ToF-SIMS.
Understanding the interactions of a pure iron surface with biological elements, such as ions and proteins in an aqueous medium, is essential for an accurate in vitro assessment of corrosion patterns. In fact, the synergy of chlorides, carbonates, phosphates and complex organic molecules present in the body environment is a key factor affecting both in vivo and in vitro degradation of materials, especially iron and its alloys. The aim of this work was the assessment of degradation patterns of pure iron in 5 commercial pseudo-physiological solutions by a thorough study of degraded surface chemistry and morphology. It also provides a methodological basis to understand the short-term degradation mechanism of degradable iron depending on the surrounding physiological media. The standard static immersion corrosion test was modified to adapt the procedure to pseudo-physiological solutions. After a 14-day static immersion test, the surfaces of samples were investigated by scanning electron microscopy, stylus profilometry and atomic force microscopy techniques. The chemistry and phase composition of the degraded layers were evaluated, respectively, by X-ray photoelectron spectrometry and X-ray diffractometry. The morphology and composition of the degradation layers were found to be different for the test-solutions: for phosphate-rich solutions, the formation of an adherent passive layer was found; degradation mechanisms related to general corrosion were predominant for all the other solutions. In conclusion, the chemical composition of the used medium plays a fundamental role in the degradation pattern of pure iron, so that direct comparisons of solutions with different ion concentrations, as reported in the literature, need to be carefully assessed.
Hydrogels exhibit mechanical properties and an architectural structure that mimics the native extracellular matrix. In addition, they have unique properties including swelling, diffusion, degradation and mechanical properties that can be tuned toward the targeted application, while they exhibit excellent biocompatibility. Therefore, hydrogels have been studied extensively to serve various biomedical and tissue engineering applications. In this chapter, hydrogels, their properties and their preparation methods are briefly introduced. Natural and synthetic hydrogels currently used in tissue engineering applications are also discussed, together with their advantages and limitations. Next, (conventional and co-axial) electrospinning is described as a processing technique to develop hydrogel scaffolds for tissue engineering applications. Finally, vascular tissue engineering is introduced to provide the distinct example of a biomedical application, which can be tackled using hydrogels.
Vascular tissue engineering focuses on the replacement of diseased small-diameter blood vessels with a diameter less than 6 mm for which adequate substitutes still do not exist. One approach to vascular tissue engineering is to culture vascular cells on a scaffold in a bioreactor. The bioreactor establishes pseudophysiological conditions for culture (medium culture, 37°C, mechanical stimulation). Collagen gels are widely used as scaffolds for tissue regeneration due to their biological properties; however, they exhibit low mechanical properties. Mechanical characterization of these scaffolds requires establishing the conditions of testing in regard to the conditions set in the bioreactor. The effects of different parameters used during mechanical testing on the collagen gels were evaluated in terms of mechanical and viscoelastic properties. Thus, a factorial experiment was adopted, and three relevant factors were considered: temperature (23°C or 37°C), hydration (aqueous saline solution or air), and mechanical preconditioning (with or without). Statistical analyses showed significant effects of these factors on the mechanical properties which were assessed by tensile tests as well as stress relaxation tests. The last tests provide a more consistent understanding of the gels' viscoelastic properties. Therefore, performing mechanical analyses on hydrogels requires setting an adequate environment in terms of temperature and aqueous saline solution as well as choosing the adequate test.
Environmental surfaces have been widely recognized as an important source of hospital-associated transmissions. A number of silver-based antibacterial coatings have been reported in the literature. However, the success of any antibacterial strategy depends on the ability to control the kinetics of the silver ions released from the coating. The novel strategy proposed in this work is based on plasma surface engineering for a controlled-release of silver ions. Plasma-based nanocoatings, plasma oxidation processes and surface patterning of silver coatings were designed and optimized. Surface analyses such as XPS and AFM, as well as silver ion release over 168 h, was evaluated by MIP-AES. Results showed that surface plasma engineering successfully allow tuning the silver release and bioactivity in Ag-containing antibacterial coatings.