Abstract BACKGROUND A fundamental precept of the carbohydrate–insulin model of obesity is that insulin secretion drives weight gain. However, fasting hyperinsulinemia can also be driven by obesity-induced insulin resistance. We used genetic variation to isolate and estimate the potentially causal effect of insulin secretion on body weight. METHODS Genetic instruments of variation of insulin secretion [assessed as insulin concentration 30 min after oral glucose (insulin-30)] were used to estimate the causal relationship between increased insulin secretion and body mass index (BMI), using bidirectional Mendelian randomization analysis of genome-wide association studies. Data sources included summary results from the largest published metaanalyses of predominantly European ancestry for insulin secretion (n = 26037) and BMI (n = 322154), as well as individual-level data from the UK Biobank (n = 138541). Data from the Cardiology and Metabolic Patient Cohort study at Massachusetts General Hospital (n = 1675) were used to validate genetic associations with insulin secretion and to test the observational association of insulin secretion and BMI. RESULTS Higher genetically determined insulin-30 was strongly associated with higher BMI (β = 0.098, P = 2.2 × 10−21), consistent with a causal role in obesity. Similar positive associations were noted in sensitivity analyses using other genetic variants as instrumental variables. By contrast, higher genetically determined BMI was not associated with insulin-30. CONCLUSIONS Mendelian randomization analyses provide evidence for a causal relationship of glucose-stimulated insulin secretion on body weight, consistent with the carbohydrate–insulin model of obesity.
ABSTRACT Background Syndromic surveillance systems for COVID-19 are being increasingly used to track and predict outbreaks of confirmed cases. Seasonal circulating respiratory viruses share syndromic overlap with COVID-19, and it is unknown how they will impact the performance of syndromic surveillance tools. Here we investigated the role of non-SARS-CoV-2 respiratory virus test positivity on COVID-19 two independent syndromic surveillance systems in Ontario, Canada. Methods We compared the weekly number of reported COVID-19 cases reported in the province of Ontario against two syndromic surveillance metrics: 1) the proportion of respondents with a self-reported COVID-like illness (CLI) from COVID Near You (CNY) and 2) the proportion of emergency department visits for upper respiratory conditions from the Acute Care Enhanced Surveillance (ACES) system. Separately, we plotted the percent positivity for other seasonal respiratory viruses over the same time period and reported Pearson’s correlation coefficients before and after the uncoupling of syndromic tools to COVID-19 cases. Results There were strong positive correlations of both CLI and ED visits for upper respiratory causes with COVID-19 cases up to and including a rise in entero/rhinovirus (r = 0.86 and 0.87, respectively). There was a strong negative correlation of both CLI and ED visits for upper respiratory causes with COVID-19 cases (r = −0.85 and −0.91, respectively) during a fall in entero/rhinovirus. Interpretation Two methods of syndromic surveillance showed strong positive correlations with COVID-19 confirmed case counts before and during a rise in circulating entero/rhinovirus. However, as positivity for enterovirus/rhinovirus fell in late September 2020, syndromic signals became uncoupled from COVID-19 cases and instead tracked the fall in entero/rhinovirus. This finding provides proof-of-principle that regional transmission of seasonal respiratory viruses may complicate the interpretation of COVID-19 surveillance data. It is imperative that surveillance systems incorporate other respiratory virus testing data in order to more accurately track and forecast COVID-19 disease activity.
Reports of “Long-COVID”, are rising but little is known about prevalence, risk factors, or whether it is possible to predict a protracted course early in the disease. We analysed data from 4182 incident cases of COVID-19 who logged their symptoms prospectively in the COVID Symptom Study app. 558 (13.3%) had symptoms lasting >=28 days, 189 (4.5%) for >=8 weeks and 95 (2.3%) for >=12 weeks. Long-COVID was characterised by symptoms of fatigue, headache, dyspnoea and anosmia and was more likely with increasing age, BMI and female sex. Experiencing more than five symptoms during the first week of illness was associated with Long-COVID, OR=3.53 [2.76;4.50]. A simple model to distinguish between short and long-COVID at 7 days, which gained a ROC-AUC of 76%, was replicated in an independent sample of 2472 antibody positive individuals. This model could be used to identify individuals for clinical trials to reduce long-term symptoms and target education and rehabilitation services.
Poor metabolic health and unhealthy lifestyle factors have been associated with risk and severity of COVID-19, but data for diet are lacking. We aimed to investigate the association of diet quality with risk and severity of COVID-19 and its interaction with socioeconomic deprivation.
Abstract Background Participatory surveillance of self-reported symptoms and vaccination status can be used to supplement traditional public health surveillance and provide insights into vaccine effectiveness and changes in the symptoms produced by an infectious disease. The University of Maryland COVID Trends and Impact Survey provides an example of participatory surveillance that leveraged Facebook’s active user base to provide self-reported symptom and vaccination data in near real-time. Methods Here, we develop a methodology for identifying changes in vaccine effectiveness and COVID-19 symptomatology using the University of Maryland COVID Trends and Impact Survey data from three middle-income countries (Guatemala, Mexico, and South Africa). We implement conditional logistic regression to develop estimates of vaccine effectiveness conditioned on the prevalence of various definitions of self-reported COVID-like illness in lieu of confirmed diagnostic test results. Results We highlight a reduction in vaccine effectiveness during Omicron-dominated waves of infections when compared to periods dominated by the Delta variant (median change across COVID-like illness definitions: −0.40, IQR[−0.45, −0.35]. Further, we identify a shift in COVID-19 symptomatology towards upper respiratory type symptoms (i.e., cough and sore throat) during Omicron periods of infections. Stratifying COVID-like illness by the National Institutes of Health’s (NIH) description of mild and severe COVID-19 symptoms reveals a similar level of vaccine protection across different levels of COVID-19 severity during the Omicron period. Conclusions Participatory surveillance data alongside methodologies described in this study are particularly useful for resource-constrained settings where diagnostic testing results may be delayed or limited.
Abstract Given the continued burden of severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) disease (COVID-19) across the U.S., there is a high unmet need for data to inform decision-making regarding social distancing and universal masking. We examined the association of community-level social distancing measures and individual masking with risk of predicted COVID-19 in a large prospective U.S. cohort study of 198,077 participants. Individuals living in communities with the greatest social distancing had a 31% lower risk of predicted COVID-19 compared with those living in communities with poor social distancing. Self-reported masking was associated with a 63% reduced risk of predicted COVID-19 even among individuals living in a community with poor social distancing. These findings provide support for the efficacy of mask-wearing even in settings of poor social distancing in reducing COVID-19 transmission. In the current environment of relaxed social distancing mandates and practices, universal masking may be particularly important in mitigating risk of infection.
Abstract We tested whether pregnant and non-pregnant women differ in COVID-19 symptom profile and severity, and we extended previous investigations on hospitalized pregnant women to those who did not require hospitalization. Two female community-based cohorts (18–44 years) provided longitudinal (smartphone application, N = 1,170,315, n = 79 pregnant tested positive) and cross-sectional (web-based survey, N = 1,344,966, n = 134 pregnant tested positive) data, prospectively collected through self-participatory citizen surveillance in UK, Sweden and USA. Pregnant and non-pregnant were compared for frequencies of events, including SARS-CoV-2 testing, symptoms and hospitalization rates. Multivariable regression was used to investigate symptoms severity and comorbidity effects. Pregnant and non-pregnant women positive for SARS-CoV-2 infection were not different in syndromic severity, except for gastrointestinal symptoms. Pregnant were more likely to have received testing, despite reporting fewer symptoms. Pre-existing lung disease was most closely associated with syndromic severity in pregnant hospitalized. Heart and kidney diseases and diabetes increased risk. The most frequent symptoms among non-hospitalized women were anosmia [63% pregnant, 92% non-pregnant] and headache [72%, 62%]. Cardiopulmonary symptoms, including persistent cough [80%] and chest pain [73%], were more frequent among pregnant who were hospitalized. Consistent with observations in non-pregnant populations, lung disease and diabetes were associated with increased risk of more severe SARS-CoV-2 infection during pregnancy.
Mobile Messaging as Surveillance Tool during Pandemic (H1N1) 2009, Mexico To the Editor: Pandemic (H1N1) 2009 highlighted challenges faced by disease surveillance systems.New approaches to complement traditional surveillance are needed, and new technologies provide new opportunities.We evaluated cell phone technology for surveillance of infl uenza outbreaks during the outbreak of pandemic (H1N1) 2009 in Mexico.On May 12, 2009, at 2:20 PM, a random sample of 982,708 telephones from an 18 million nationwide network of mostly prepaid cell phones (1) received a text message invitation to a Ministry of Health survey.Infl uenza-like illness (ILI) in April, date of fever onset, severity, number of household members with ILI, age, infl uenza vaccination, household size, and number of children in each household were assessed (online Technical Appendix Figure 1, www.cdc.gov/EID/content/16/9/1488-Techapp.pdf).ILI was defi ned as fever and cough or sore throat, and severe ILI was defi ned as inability to work, study, or maintain family care.Unstructured supplementary service data, an interactive platform available on most cell phones, was used.We obtained daily counts of suspected and confi rmed cases of pandemic (H1N1) 2009 from the nationwide clinic-based surveillance system Sistema Nacional de Vigilancia Epidemiológica (SINAVE) (2,3).Of 70,856 responses received, 56,551 (78.1%) were unique mobile numbers (5.8% response rate; only the fi rst response was used).Within 3 hours, 53% of responses were received and by 24 hours, 89% were received.Mean (SD) age of respondents was 25.2 (10.4) years (online Technical Appendix Table ).A total of 9,333 persons reported ILI and 49.3% had severe
Face masks have become commonplace across the USA because of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemic. Although evidence suggests that masks help to curb the spread of the disease, there is little empirical research at the population level. We investigate the association between self-reported mask-wearing, physical distancing, and SARS-CoV-2 transmission in the USA, along with the effect of statewide mandates on mask uptake.Serial cross-sectional surveys were administered via a web platform to randomly surveyed US individuals aged 13 years and older, to query self-reports of face mask-wearing. Survey responses were combined with instantaneous reproductive number (Rt) estimates from two publicly available sources, the outcome of interest. Measures of physical distancing, community demographics, and other potential sources of confounding (from publicly available sources) were also assessed. We fitted multivariate logistic regression models to estimate the association between mask-wearing and community transmission control (Rt<1). Additionally, mask-wearing in 12 states was evaluated 2 weeks before and after statewide mandates.378 207 individuals responded to the survey between June 3 and July 27, 2020, of which 4186 were excluded for missing data. We observed an increasing trend in reported mask usage across the USA, although uptake varied by geography. A logistic model controlling for physical distancing, population demographics, and other variables found that a 10% increase in self-reported mask-wearing was associated with an increased odds of transmission control (odds ratio 3·53, 95% CI 2·03-6·43). We found that communities with high reported mask-wearing and physical distancing had the highest predicted probability of transmission control. Segmented regression analysis of reported mask-wearing showed no statistically significant change in the slope after mandates were introduced; however, the upward trend in reported mask-wearing was preserved.The widespread reported use of face masks combined with physical distancing increases the odds of SARS-CoV-2 transmission control. Self-reported mask-wearing increased separately from government mask mandates, suggesting that supplemental public health interventions are needed to maximise adoption and help to curb the ongoing epidemic.Flu Lab, Google.org (via the Tides Foundation), National Institutes for Health, National Science Foundation, Morris-Singer Foundation, MOOD, Branco Weiss Fellowship, Ending Pandemics, Centers for Disease Control and Prevention (USA).