Abstract Smac mimetics target inhibitor of apoptosis (IAP) proteins, thereby suppressing their function to facilitate tumor cell death. Here we have evaluated the efficacy of the preclinical Smac-mimetic compound A and the clinical lead birinapant on breast cancer cells. Both exhibited potent in vitro activity in triple-negative breast cancer (TNBC) cells, including those from patient-derived xenograft (PDX) models. Birinapant was further studied using in vivo PDX models of TNBC and estrogen receptor-positive (ER + ) breast cancer. Birinapant exhibited single agent activity in all TNBC PDX models and augmented response to docetaxel, the latter through induction of TNF. Transcriptomic analysis of TCGA datasets revealed that genes encoding mediators of Smac-mimetic-induced cell death were expressed at higher levels in TNBC compared with ER + breast cancer, resulting in a molecular signature associated with responsiveness to Smac mimetics. In addition, the cell death complex was preferentially formed in TNBCs versus ER + cells in response to Smac mimetics. Taken together, our findings provide a rationale for prospectively selecting patients whose breast tumors contain a competent death receptor signaling pathway for the further evaluation of birinapant in the clinic.
Tumor necrosis factor (TNF) is a key component of the innate immune response. Upon binding to its receptor, TNFR1, it promotes production of other cytokines via a membrane-bound complex 1 or induces cell death via a cytosolic complex 2. To understand how TNF-induced cell death is regulated, we performed mass spectrometry of complex 2 and identified tankyrase-1 as a native component that, upon a death stimulus, mediates complex 2 poly-ADP-ribosylation (PARylation). PARylation promotes recruitment of the E3 ligase RNF146, resulting in proteasomal degradation of complex 2, thereby limiting cell death. Expression of the ADP-ribose-binding/hydrolyzing severe acute respiratory syndrome coronavirus 2 macrodomain sensitizes cells to TNF-induced death via abolishing complex 2 PARylation. This suggests that disruption of ADP-ribosylation during an infection can prime a cell to retaliate with an inflammatory cell death.
Abstract Neutrophils help to clear pathogens and cellular debris, but can also cause collateral damage within inflamed tissues. Prolonged neutrophil residency within an inflammatory niche can exacerbate tissue pathology. Using both genetic and pharmacological approaches, we show that BCL-XL is required for the persistence of neutrophils within inflammatory sites in mice. We demonstrate that a selective BCL-XL inhibitor (A-1331852) has therapeutic potential by causing apoptosis in inflammatory human neutrophils ex vivo. Moreover, in murine models of acute and chronic inflammatory disease, it reduced inflammatory neutrophil numbers and ameliorated tissue pathology. In contrast, there was minimal effect on circulating neutrophils. Thus, we show a differential survival requirement in activated neutrophils for BCL-XL and reveal a new therapeutic approach to neutrophil-mediated diseases.
Mice homozygous for a point mutation in the Rc3h1 gene encoding Roquin1, designated sanroque mice, develop a severe antibody‐mediated autoimmune condition. The disease is T‐cell intrinsic, exacerbated by macrophage‐intrinsic defects and driven by excessive T follicular helper cell generation and spontaneous germinal centre (GC) formation. This culminates in abnormally high numbers of plasma cells secreting high‐affinity autoreactive immunoglobulin G (IgG). Obf1 is a transcriptional co‐activator required for normal T‐cell‐dependent antibody responses, and it is essential for GC formation under all circumstances so far tested. We crossed sanroque mice with Obf1‐null mice to determine whether the hyperactivity of sanroque T cells could drive Obf1 −/− B cells to differentiate to GC B cells, or conversely, if Obf1 loss would prevent sanroque ‐mediated autoimmune disease. Surprisingly, while sanroque/Obf1 −/− mice did not form GC, they still developed autoimmune disease and succumbed even more rapidly than did sanroque mice. The disease was mediated by autoreactive IgM, which may have been derived from a pre‐existing population of autoreactive B cells in the Obf1 −/− mice responding to the over‐exuberant activity of sanroque CD4 cells.
ABSTRACT Tumor necrosis factor (TNF) is an inflammatory cytokine that, upon binding to its receptor TNFR1, can drive cytokine production, cell survival, or cell death and is a major component of an organism’s anti-pathogen repetoire 1,2 . TNF stimulation leads to the formation of two distinct signalling complexes, a well-defined membrane bound complex (complex 1), and a less well characterised cytosolic death inducing complex (complex 2). Using mass spectrometry, we identified the ADP-ribosyltransferase, tankyrase-1 (TNKS1/TNKS/ARTD5/PARP5a) as a novel native complex 2 component. Following a TNF-induced death stimulus TNKS1 is recruited to complex 2, resulting in complex 2 poly(ADP-ribosyl)ation (PARylation). Tankyrase inhibitors sensitise cells to TNF-induced death, which is correlated with increased complex 2 assembly. Tankyrase-mediated PARylation promotes recruitment of the E3 ligase RNF146 and RNF146 deficiency or proteasome inhibition results in increased levels of complex 2, suggesting that RNF146 causes proteasomal degradation of complex 2. Several viruses express ADP-ribose binding macrodomain proteins, and expression of the SARS-CoV-2 or VEEV macrodomain markedly sensitises cells to TNF-induced death. This suggests that ADP-ribosylation serves as yet another mechanism to detect pathogenic interference of TNF signalling and retaliate with an inflammatory cell death.
Abstract The clinical development of Natural Killer (NK) cell-mediated immunotherapy marks a milestone in the development of new cancer therapies and has gained traction due to the intrinsic ability of the NK cell to target and kill tumour cells. To fully harness the tumour killing ability of NK cells, we need to improve NK cell persistence and overcome suppression of NK cell activation in the tumour microenvironment. The trans-membrane, protein tyrosine phosphatase CD45, regulates NK cell homeostasis, with genetic loss of CD45 in mice resulting in increased numbers of mature NK cells [1–3]. This suggests that CD45-deficient NK cells might display enhanced persistence following adoptive transfer. However, here we demonstrated that adoptive transfer of CD45-deficiency did not enhance NK cell persistence in mice, and instead, the homeostatic disturbance of NK cells in CD45-deficient mice stemmed from a developmental defect in the common lymphoid progenitor population. The enhanced maturation within the CD45-deficient NK cell compartment was intrinsic to the NK cell lineage, and independent of the developmental defect. CD45 is not a conventional immune checkpoint candidate, as systemic loss is detrimental to T and B cell development [4–6], compromising the adaptive immune system. Nonetheless, this study suggests that inhibition of CD45 in progenitor or stem cell populations may improve the yield of in vitro generated NK cells for adoptive therapy.
Significance Apoptosis is crucial for immune system function and limiting tumor development. Because BAK and BAX are essential effectors of apoptosis, understanding how they are activated to form the oligomeric mitochondrial pores that kill cells is a major goal of the field. We define a requirement for two sites on mitochondrial BAK for its interaction with, and activation by, BCL-2 homology 3 (BH3)-only proteins during apoptosis and determine that binding of BH3-only proteins at a distal site promotes exposure of a canonical site to allow terminal BAK activation and homooligomerization. Additionally, we provide insight into how BAK and BAX kill cells, identifying that the oligomeric pore is limited to interactions between the BH3 domain and canonical groove and does not involve additional protein interfaces.
The Oct2 protein, encoded by the Pou2f2 gene, was originally predicted to act as a DNA binding transcriptional activator of immunoglobulin (Ig) in B lineage cells. This prediction flowed from the earlier observation that an 8 bp sequence, the “octamer motif”, was a highly conserved component of most Ig gene promoters and enhancers, and evidence from over-expression and reporter assays confirmed Oct2-mediated, octamer-dependent gene expression. Complexity was added to the story when Oct1, an independently encoded protein, ubiquitously expressed from the Pou2f 1 gene, was characterised and found to bind to the octamer motif with almost identical specificity, and later, when the co-activator Obf1 (OCA-B, Bob.1), encoded by the Pou2af1 gene, was cloned. Obf1 joins Oct2 (and Oct1) on the DNA of a subset of octamer motifs to enhance their transactivation strength. While these proteins variously carried the mantle of determinants of Ig gene expression in B cells for many years, such a role has not been borne out for them by characterisation of mice lacking functional copies of the genes, either as single or as compound mutants. Instead, we and others have shown that Oct2 and Obf1 are required for B cells to mature fully in vivo, for B cells to respond to the T cell cytokines IL5 and IL4, and for B cells to produce IL6 normally during a T cell dependent immune response. We show here that Oct2 affects Syk gene expression, thus influencing B cell receptor signalling, and that Oct2 loss blocks Slamf1 expression in vivo as a result of incomplete B cell maturation. Upon IL4 signalling, Stat6 up-regulates Obf1, indirectly via Xbp1, to enable plasma cell differentiation. Thus, Oct2 and Obf1 enable B cells to respond normally to antigen receptor signals, to express surface receptors that mediate physical interaction with T cells, or to produce and respond to cytokines that are critical drivers of B cell and T cell differentiation during a humoral immune response.
Bcl6 (B-cell lymphoma 6) is a transcriptional repressor and critical mediator of the germinal center reaction during a T-cell-dependent antibody response, where it enables somatic hypermutation of immunoglobulin genes and inhibits terminal differentiation via repression of Blimp1. It can also contribute to the development of diffuse large B-cell lymphoma when expressed inappropriately. Bcl6 regulation is mediated both at the transcriptional and post-transcriptional levels, and in particular a strong signal through the B-cell receptor causes rapid proteasomal degradation of Bcl6. Despite the importance of Bcl6 in both immunity and cancer, little is known about how other extrinsic factors regulate Bcl6 in B cells. Here we show that Bcl6 is indeed highly unstable in B cells after a B-cell receptor (BCR) signal, but that the T-cell-derived cytokines interleukin 4 (IL4) and IL21 counteract BCR-mediated degradation, preserving Bcl6 protein levels. Stat6, downstream of IL4, can induce Bcl6 transcription directly. In vivo, B-cell intrinsic loss of IL4 or IL21 signaling reduces the magnitude or duration of the GC response, respectively, while their combined loss almost completely eliminates the GC response. This work provides key insights into the effect mediated by T-follicular helper cytokines on Bcl6 regulation.