Volume resuscitation with hydroxyethyl starch (HES) is controversially discussed and we recently showed that HES perfusion impairs endothelial and epithelial intestinal barrier integrity. Here we investigated whether Albumin containing HES solutions are superior to HES alone in maintaining intestinal barrier function.An isolated perfused model of the mouse small intestine was used to investigate the effects of: (i) 3 % Albumin (Alb), (ii) 3 % HES or (iii) 1.5 % HES/1.5 % Albumin (HES/Alb). Intestinal morphology, cell damage, metabolic functions, fluid shifts and endothelial/epithelial barrier permeability were evaluated. Potentially involved signaling mechanisms (Erk1/2, Akt and Stat5 phosphorylation) were screened.HES induced histomorphological damage (p < 0.01 vs. Alb), by trend elevated the amount of luminal intestinal fatty acid binding protein and reduced galactose uptake (p < 0.001 vs. Alb). Luminal and lymphatic flow rates were increased (p < 0.001 vs. Alb), while vascular flow was decreased (p < 0.001 vs. Alb) during HES perfusion. HES also increased the vascular to luminal FITC-dextran transfer (p < 0.001 vs. Alb), pointing towards a fluid shift from the vascular to the luminal and lymphatic compartments during HES perfusion. Addition of Alb (HES/Alb) reversed all adverse effects of HES (p < 0.05 vs. HES), restored barrier integrity (p < 0.05 vs. HES) and improved metabolic function of the intestine (p < 0.001 vs. HES; p < 0.05 vs. Alb). Mechanistically, HES/Alb perfusion resulted in an increased phosphorylation of Erk1/2 and Akt kinases (p < 0.001 vs. HES), while Stat5 remained unchanged.Albumin supplementation abrogates the adverse effects of HES in the intestine and underlying mechanism may function via phosphorylation of Erk1/2 and Akt. Albumin containing HES solutions are superior to HES alone and may improve the suitability of HES in the clinic.
Abstract Objectives The sequence of initial tissue ischaemia and consecutive blood flow restoration leads to ischaemia/reperfusion (I/R) injury, which is typically characterized by a specific inflammatory response. Migrating monocytes seem to mediate the immune response in ischaemic tissues and influence detrimental as well as regenerative effects during I/R injury. Materials and Methods To clarify the role of classical monocytes in I/R injury, isolated human monocytes were subjected to I/R in vitro (3 hours ischaemia followed by 24 hours of reperfusion). Cellular resilience, monocyte differentiation, cytokine secretion, as well as influence on endothelial tube formation, migration and cell recovery were investigated. Results We show that I/R supported an enhanced resilience of monocytes and induced intracellular phosphorylation of the prosurvival molecules Erk1/2 and Akt. FACS analysis showed no major alteration in monocyte subtype differentiation and surface marker expression under I/R. Further, our experiments revealed that I/R changes the cytokine secretion pattern, release of angiogenesis associated proteins and MMP‐9 activity in supernatants of monocytes exposed to I/R. Supernatants from monocytes subjected to I/R attenuated endothelial tube formation as indicator for angiogenesis as well as endothelial cell migration and recovery. Conclusion In summary, monocytes showed no significant change in cellular integrity and monocyte subtype after I/R. Functionally, monocytes might have a rather detrimental influence during the initial phase of I/R, suppressing endothelial cell migration and neoangiogenesis.
Perinatal asphyxia represents one of the major causes of neonatal morbidity and mortality. Hypothermia is currently the only established treatment for hypoxic-ischemic encephalopathy (HIE), but additional pharmacological strategies are being explored to further reduce the damage after perinatal asphyxia. The aim of this study was to evaluate whether 2-iminobiotin (2-IB) superimposed on hypothermia has the potential to attenuate hypoxia-induced injury of neuronal cells. In vitro hypoxia was induced for 7h in neuronal IMR-32 cell cultures. Afterwards, all cultures were subjected to 25h of hypothermia (33.5°C), and incubated with vehicle or 2-IB (10, 30, 50, 100 and 300ng/ml). Cell morphology was evaluated by brightfield microscopy. Cell damage was analyzed by LDH assay. Production of reactive oxygen species (ROS) was measured using fluorometric assays. Western blotting for PARP, caspase-3, and the phosphorylated forms of akt and erk1/2 was conducted. To evaluate early apoptotic events and signaling, cell protein was isolated 4h post-hypoxia and human apoptosis proteome profiler arrays were performed. 25h after the hypoxic insult, clear morphological signs of cell damage were visible and significant LDH release as well as ROS production were observed even under hypothermic conditions. Post-hypoxic application of 2-IB (10ng/ml and 30ng/ml) reduced the hypoxia-induced LDH release but not ROS production. Phosphorylation of erk1/2 was significantly increased after hypoxia, while phosphorylation of akt, protein expression of caspase-3 and cleavage of PARP were only slightly increased. Addition of 2-IB did not affect any of the investigated proteins. Apoptosis proteome profiler arrays performed with cellular protein obtained 4h after hypoxia revealed that post-hypoxic application of 2-IB resulted in a ≥25% down regulation of 10/35 apoptosis-related proteins: Bad, Bax, Bcl-2, cleaved Caspase-3, TRAILR1, TRAILR2, PON2, p21, p27and phospho Rad17. In summary, addition of 2-IB during hypothermia is able to attenuate hypoxia-induced neuronal cell damage in vitro. Combination treatment of hypothermia with 2-IB could be a promising strategy to reduce hypoxia-induced neuronal cell damage and should be considered in further animal and clinical studies.
Propofol is widely used in routine clinical practice for the induction and maintenance of anaesthesia. Although propofol is regarded as a well tolerated anaesthetic, its effect on intact or damaged endothelial cells has not yet been elucidated.The aim of this study was to investigate the effects of different concentrations of propofol on cell damage, metabolic activity, barrier function and wound healing capacity of human endothelial cells.An in vitro investigation.Research Laboratory of the Department of Anaesthesiology and Intensive Care Medicine, University Hospital Schleswig-Holstein, Kiel, Germany.In vitro cultures of primary human umbilical vein endothelial cells (HUVECs).Intact HUVEC or wounded HUVEC monolayers were incubated with or without different concentrations of propofol (10, 30 and 100 μmol l).Cell damage, metabolic activity, monolayer permeability, wound healing capacity, protein phosphorylation.Propofol did not alter the morphology, induce cell damage or influence metabolic activity of intact HUVEC cells. Permeability of a HUVEC monolayer was increased by propofol 100 μmol l (P < 0.05). Wound closure was inhibited by the addition of propofol 30 and 100 μmol l (P < 0.05 and P < 0.01). This effect was associated with increased phosphorylation of extracellular signal regulated kinases (Erk) 1/2 (30 and 100 μmol l; both P < 0.05) and decreased phosphorylation of Rho kinase (Rock) (100 μmol l; P < 0.05).Propofol does not damage intact endothelial cells, but increases permeability of an endothelial cell monolayer at high concentrations and inhibits wound closure in vitro. Further experimental and clinical in vivo research should be performed to clarify the influence of propofol on endothelial wound healing.