Meniscal injuries, particularly in the avascular zone, have a low propensity for healing and are associated with the development of osteoarthritis. Current meniscal repair techniques are limited to specific tear types and have significant risk for failure. In previous work, we demonstrated the ability of meniscus-derived matrix (MDM) scaffolds to augment the integration and repair of an in vitro meniscus defect. The objective of this study was to determine the effects of percent composition and dehydrothermal (DHT) or genipin cross-linking of MDM bioscaffolds on primary meniscus cellular responses and integrative meniscus repair. In all scaffolds, the porous microenvironment allowed for exogenous cell infiltration and proliferation, as well as endogenous meniscus cell migration. The genipin cross-linked scaffolds promoted extracellular matrix (ECM) deposition and/or retention. The shear strength of integrative meniscus repair was improved with increasing percentages of MDM and genipin cross-linking. Overall, the 16% genipin cross-linked scaffolds were most effective at enhancing integrative meniscus repair. The ability of the genipin cross-linked scaffolds to attract endogenous meniscus cells, promote glycosaminoglycan and collagen deposition, and enhance integrative meniscus repair reveals that these MDM scaffolds are promising tools to augment meniscus healing.
To examine the effects of a 6-month weight loss intervention on physical function, inflammatory biomarkers, and metabolic biomarkers in both those with and without osteoarthritis (OA).
Obesity, which potentially increases loading at the knee, is a common and modifiable risk factor for the development of knee osteoarthritis. The menisci play an important role in distributing joint loads to the underlying cartilage. However, the influence of obesity on the role of the menisci in cartilage load distribution in vivo is currently unknown.To measure tibial cartilage thickness and compressive strain in response to walking in areas covered and uncovered by the menisci in participants with normal body mass index (BMI) and participants with high BMI.Controlled laboratory study.Magnetic resonance (MR) images of the right knees of participants with normal BMI (<25 kg/m2; n = 8) and participants with high BMI (>30 kg/m2; n = 7) were obtained before and after treadmill walking. The outer margins of the tibia, the medial and lateral cartilage surfaces, and the meniscal footprints were segmented on each MR image to create 3-dimensional models of the joint. Cartilage thickness was measured before and after walking in areas covered and uncovered by the menisci. Cartilage compressive strain was then determined from changes in thickness resulting from the walking task.Before exercise, medial and lateral uncovered cartilage of the tibial plateau was significantly thicker than covered cartilage in both BMI groups. In the uncovered region of the lateral tibial plateau, participants with high BMI had thinner preexercise cartilage than those with a normal BMI. Cartilage compressive strain was significantly greater in medial and lateral cartilage in participants with high BMI compared with those with normal BMI in both the regions covered and those uncovered by the menisci.Participants with high BMI experienced greater cartilage strain in response to walking than participants with normal BMI in both covered and uncovered regions of cartilage, which may indicate that the load-distributing function of the meniscus is not sufficient to moderate the effects of obesity.These findings demonstrate the critical effect of obesity on cartilage function and thickness in regions covered and uncovered by the menisci.