Alternations of gut microbiota (GM) in atrial fibrillation (AF) with elevated diversity, perturbed composition and function have been described previously. The current work aimed to assess the association of GM composition with AF recurrence (RAF) after ablation based on metagenomic sequencing and metabolomic analyses and to construct a GM-based predictive model for RAF. Compared with non-AF controls (50 individuals), GM composition and metabolomic profile were significantly altered between patients with recurrent AF (17 individuals) and non-RAF group (23 individuals). Notably, discriminative taxa between the non-RAF and RAF groups, including the families Nitrosomonadaceae and Lentisphaeraceae, the genera Marinitoga and Rufibacter and the species Faecalibacterium spCAG:82, Bacillus gobiensis and Desulfobacterales bacterium PC51MH44, were selected to construct a taxonomic scoring system based on LASSO analysis. After incorporating the clinical factors of RAF, taxonomic score retained a significant association with RAF incidence (HR = 2.647, P = .041). An elevated AUC (0.954) and positive NRI (1.5601) for predicting RAF compared with traditional clinical scoring (AUC = 0.6918) were obtained. The GM-based taxonomic scoring system theoretically improves the model performance, and the nomogram and decision curve analysis validated the clinical value of the predicting model. These data provide novel possibility that incorporating the GM factor into future recurrent risk stratification.
Background/Aims: Copper is an essential trace element for normal cellular function and contributes to critical physiological or pathological processes. The aim of the study was to investigate the effects of copper on vascular tone of rat mesenteric artery and compare the effects of copper on noradrenaline (NA) and high K+ induced vasoconstriction. Methods: The rat mesenteric arteries were isolated and the vessel tone was measured by using multi wire myograph system in vitro. Blood pressure of carotid artery in rabbits was measured by using physiological data acquisition and analysis system in vivo. Results: Copper dose-dependently blunted NA-induced vasoconstriction of rat mesenteric artery. Copper-induced vasorelaxation was inhibited when the vessels were pretreated with NG-nitro-L-arginine methyl ester (L-NAME). Copper did not blunt high K+-induced vasoconstriction. Copper preincubation inhibited NA-evoked vasoconstriction and the inhibition was not affected by the presence of L-NAME. Copper preincubation showed no effect on high K+-evoked vasoconstriction. Copper chelator diethyldithiocarbamate trihydrate (DTC) antagonized the vasoactivity induced by copper in rat mesenteric artery. In vivo experiments showed that copper injection (iv) significantly decreased blood pressure of rabbits and NA or DTC injection (iv) did not rescue the copper-induced hypotension and animal death. Conclusion: Copper blunted NA but not high K+-induced vasoconstriction of rat mesenteric artery. The acute effect of copper on NA-induced vasoconstriction was depended on nitric oxide (NO), but the effect of copper pretreatment on NA-induced vasoconstriction was independed on NO, suggesting that copper affected NA-induced vasoconstriction by two distinct mechanisms.
Abstract Aims Angiopoietin-like protein 8 (ANGPTL8) plays important roles in lipid metabolism, glucose metabolism, inflammation, and cell proliferation and migration. Clinical studies have indicated that circulating ANGPTL8 concentrations are increased in patients with hypertension and positively associated with blood pressure. ANGPTL8 deficiency ameliorates blood pressure in mice treated with chronic intermittent hypoxia. Currently, little is known regarding the pathophysiological role of the vascular smooth muscle cell (VSMC)-derived ANGPTL8 in hypertension and hypertensive cardiovascular remodelling. Methods and results Circulating ANGPTL8 concentrations, as determined by enzyme-linked immunosorbent assay, were significantly higher in hypertensive patients than in controls (524.51 ± 26.97 vs. 962.92 ± 15.91 pg/mL; P < 0.001). In hypertensive mice [angiotensin II (AngII) treatment for 14 days] and spontaneously hypertensive rats, ANGPTL8 expression was increased and predominantly located in VSMCs. In AngII-treated mice, systolic and diastolic blood pressure in Tagln-Cre-ANGPTL8fl/fl mice were approximately 15–25 mmHg lower than that in ANGPTL8fl/fl mice. AngII-induced vascular remodelling, vascular constriction, and increased expression of cell markers of proliferation (PCNA and Ki67) and migration (MMP-2 and MMP-9) were strikingly attenuated in Tagln-Cre-ANGPTL8fl/fl mice compared with ANGPTL8fl/fl mice. Furthermore, the AngII-induced increase in the heart size, heart weight, heart/body weight ratio, cardiomyocyte cross-sectional area, and collagen deposition was ameliorated in Tagln-Cre-ANGPTL8fl/fl mice compared with ANGPTL8fl/fl mice. In rat artery smooth muscle cells, ANGPTL8-short hairpin RNA decreased intracellular calcium levels and prevented AngII-induced proliferation and migration through the PI3K-Akt pathway, as shown using LY294002 (inhibitor of PI3K) and Akt inhibitor VIII. Conclusion This study suggests that ANGPTL8 in VSMCs plays an important role in AngII-induced hypertension and associated cardiovascular remodelling. ANGPTL8 may be a novel therapeutic target against pathological hypertension and hypertensive cardiovascular hypertrophy.
Obstructive sleep apnea (OSA) is a major risk factor for cardiovascular mortality. Apnea-induced chronic intermittent hypoxia (CIH) is a primary pathophysiological manifestation of OSA that promotes various cardiovascular alterations, such as aortic vascular remodeling. In this study, we investigated the association between angiopoietin-like proteins 8 (ANGPTL8) and CIH-induced aortic vascular remodeling in mice.C57BL/6J male mice were divided into four groups: Normoxia group, ANGPTL8-/- group, CIH group, CIH + ANGPTL8-/- group. Mice in the normoxia group and ANGPTL8-/- group received no treatment, while mice in the CIH and CIH + ANGPTL8-/- group were subjected to CIH (21%-5% O2, 180 s/cycle, 10 h/day) for 6 weeks. At the end of the experiments, intima-media thickness (IMT), elastin disorganization, and aortic wall collagen abundance were assessed in vivo. Immunohistochemistry and Western-blot were used to detect endoplasmic reticulum stress (ERS) and aortic vascular smooth muscle cell proliferation. ANGPTL8 shRNA and ANGPL8 overexpression were used in aortic vascular smooth muscle cells to investigate the mechanism of ANGPTL8 in CIH.Compared to the control group, CIH exposure significantly increased intima-media thickness (IMT), elastic fibers disorganization, and aortic wall collagen abundance. CIH also significantly increased blood pressure, induced hyperlipidemia, as well as the expression of ERS protein activating transcription factor-6 (ATF6) and aortic vascular smooth muscle cell proliferation. Contrary, ANGPTL8-/- significantly mitigated the CIH-induced vascular remodeling; ANGPTL8-/- decreased CIH-induced hypertension and hyperlipidemia, inhibited the protein expression of ATF6, and aortic vascular smooth muscle cell proliferation. Moreover, our in vitro study suggested that CIH could induce ANGPTL8 expression via hypoxia-inducible factor (HIF-1α); ANGPTL8 induced proliferation of aortic vascular smooth muscle cells via the ERS pathway.ANGPTL8-/- can prevent CIH-induced aortic vascular remodeling, probably through the inhibition of the ERS pathway. Therefore, ANGPTL8 might be a potential target in CIH-induced aortic vascular remodeling.
Abstract Angiopoietin-like protein 8 (ANGPTL8) plays important roles in lipid metabolism, glucose metabolism, inflammation, and cell proliferation and migration. Clinical studies have indicated that circulating ANGPTL8 levels are increased in patients with thoracic aortic dissection (TAD). TAD shares several risk factors with abdominal aortic aneurysm (AAA). However, the role of ANGPTL8 in AAA pathogenesis has never been investigated. Here, we investigated the effect of ANGPTL8 knockout on AAA in ApoE−/− mice. ApoE−/−ANGPTL8−/− mice were generated by crossing ANGPTL8−/− and ApoE−/− mice. AAA was induced in ApoE−/− using perfusion of angiotensin II (AngII). ANGPTL8 was significantly up-regulated in AAA tissues of human and experimental mice. Knockout of ANGPTL8 significantly reduced AngII-induced AAA formation, elastin breaks, aortic inflammatory cytokines, matrix metalloproteinase expression, and smooth muscle cell apoptosis in ApoE−/− mice. Similarly, ANGPTL8 sh-RNA significantly reduced AngII-induced AAA formation in ApoE−/− mice. ANGPTL8 deficiency inhibited AAA formation, and ANGPTL8 may therefore be a potential therapeutic target for AAA.
Abstract Chronic intermittent hypoxia (CIH) is the primary feature of obstructive sleep apnoea (OSA), a crucial risk factor for cardiovascular diseases. Long non‐coding RNAs (lncRNAs) in myocardial infarction (MI) pathogenesis have drawn considerable attention. However, whether CIH participates in the modulation of lncRNA profiles during MI is yet unclear. To investigate the influence of CIH on MI, cardiac damage was assessed by histology and echocardiography, and lncRNA and mRNA integrated microarrays were screened. MI mouse model showed myocardial hypertrophy, aggravated inflammation and fibrosis, and compromised left ventricle function under CIH. Compared with normoxia, 644 lncRNAs and 1084 differentially expressed mRNAs were identified following CIH for 4 weeks, whereas 1482 lncRNAs and 990 mRNAs were altered at 8 weeks. Strikingly, reoxygenation after CIH markedly affected 1759 lncRNAs and 778 mRNAs. Of these, 11 lncRNAs modulated by CIH were restored after reoxygenation and were validated by qPCR. The GO terms and KEGG pathways of genes varied significantly by CIH. lncRNA‐mRNA correlation further showed that lncRNAs, NONMMUT032513 and NONMMUT074571 were positively correlated with ZEB1 and negatively correlated with Cmbl. The current results demonstrated a causal correlation between CIH and lncRNA alternations during MI, suggesting that lncRNAs might be responsible for MI aggravation under CIH.
With the establishment of the heart-gut axis concept, accumulating studies suggest that the gut microbiome plays an important role in the pathogenesis of cardiovascular diseases. Yet, little evidence has been reported in characterizing the gut microbiota shift in atrial fibrillation.We include the result of the global alterations that occur in the intestinal microbiota in a cohort of 50 patients with atrial fibrillation and 50 matched controls based on a strategy of metagenomic and metabolomic analyses.The alterations include a dramatic elevation in microbial diversity and a specific perturbation of gut microbiota composition. Overgrowth of Ruminococcus, Streptococcus, and Enterococcus, as well as reduction of Faecalibacterium, Alistipes, Oscillibacter, and Bilophila were detected in patients with atrial fibrillation. A gut microbial function imbalance and correlated metabolic pattern changes were observed with atrial fibrillation in both fecal and serum samples. The differential gut microbiome signatures could be used to identify patients with atrial fibrillation.Our findings characterize the disordered gut microbiota and microbial metabolite profiles in atrial fibrillation. Further research could determine whether intervention strategies targeting intestinal microbiome composition might be useful to counteract the progression of atrial fibrillation.