Herpes Simplex Virus 1 (HSV1) is amongst the most clinically advanced oncolytic virus platforms. However, efficient and sustained viral replication within tumours is limiting. Rapamycin can stimulate HSV1 replication in cancer cells, but active-site dual mTORC1 and mTORC2 (mammalian target of rapamycin complex 1 and 2) inhibitors (asTORi) were shown to suppress the virus in normal cells. Surprisingly, using the infected cell protein 0 (ICP0)-deleted HSV1 (HSV1-dICP0), we found that asTORi markedly augment infection in cancer cells and a mouse mammary cancer xenograft. Mechanistically, asTORi repressed mRNA translation in normal cells, resulting in defective antiviral response but also inhibition of HSV1-dICP0 replication. asTORi also reduced antiviral response in cancer cells, however in contrast to normal cells, transformed cells and cells transduced to elevate the expression of eukaryotic initiation factor 4E (eIF4E) or to silence the repressors eIF4E binding proteins (4E-BPs), selectively maintained HSV1-dICP0 protein synthesis during asTORi treatment, ultimately supporting increased viral replication. Our data show that altered eIF4E/4E-BPs expression can act to promote HSV1-dICP0 infection under prolonged mTOR inhibition. Thus, pharmacoviral combination of asTORi and HSV1 can target cancer cells displaying dysregulated eIF4E/4E-BPs axis.
Drug resistance underpins poor outcomes in many malignancies including refractory and relapsed acute myeloid leukemia (R/R AML). Glucuronidation is a common mechanism of drug inactivation impacting many AML therapies, e.g., cytarabine, decitabine, azacytidine and venetoclax. In AML cells, the capacity for glucuronidation arises from increased production of the UDP-glucuronosyltransferase 1A (UGT1A) enzymes. UGT1A elevation was first observed in AML patients who relapsed after response to ribavirin, a drug used to target the eukaryotic translation initiation factor eIF4E, and subsequently in patients who relapsed on cytarabine. UGT1A elevation resulted from increased expression of the sonic-hedgehog transcription factor GLI1. Vismodegib inhibited GLI1, decreased UGT1A levels, reduced glucuronidation of ribavirin and cytarabine, and re-sensitized cells to these drugs. Here, we examined if UGT1A protein levels, and thus glucuronidation activity, were targetable in humans and if this corresponded to clinical response. We conducted a phase II trial using vismodegib with ribavirin, with or without decitabine, in largely heavily pre-treated patients with high-eIF4E AML. Pre-therapy molecular assessment of patients' blasts indicated highly elevated UGT1A levels relative to healthy volunteers. Among patients with partial response, blast response or prolonged stable disease, vismodegib reduced UGT1A levels, which corresponded to effective targeting of eIF4E by ribavirin. In all, our studies are the first to demonstrate that UGT1A protein, and thus glucuronidation, are targetable in humans. These studies pave the way for the development of therapies that impair glucuronidation, one of the most common drug deactivation modalities. Clinicaltrials.gov: NCT02073838.
Metformin inhibits the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway, which is frequently upregulated in hepatocellular carcinoma (HCC). Metformin has also been shown to induce apoptosis in this cancer. Here, we investigate whether metformin-induced apoptosis in HCC is mediated by the downstream mTORC1 effectors eukaryotic initiation factor 4E and (eIF4E)-binding proteins (4E-BPs). Further, we ask whether changes in 4E-BPs activity during metformin treatment negatively regulate translation of the anti-apoptotic myeloid cell leukemia 1 (Mcl-1) mRNA. A genetic HCC mouse model was employed to assess the ability of metformin to reduce tumor formation, induce apoptosis, and control 4E-BP1 activation and Mcl-1 protein expression. In parallel, the HCC cell line Huh7 was transduced with scrambled shRNA (control) or shRNAs targeting 4E-BP1 and 4E-BP2 (4E-BP knock-down (KD)) to measure differences in mRNA translation, apoptosis, and Mcl-1 protein expression after metformin treatment. In addition, immunohistochemical staining of eIF4E and 4E-BP1 protein levels was addressed in a HCC patient tissue microarray. We found that metformin decreased HCC tumor burden, and tumor tissues showed elevated apoptosis with reduced Mcl-1 and phosphorylated 4E-BP1 protein levels. In control but not 4E-BP KD Huh7 cells, metformin induced apoptosis and repressed Mcl-1 mRNA translation and protein levels. Immunostaining of HCC patient tumor tissues revealed a varying ratio of eIF4E/4E-BP1 expression. Our results propose that metformin induces apoptosis in mouse and cellular models of HCC through activation of 4E-BPs, thus tumors with elevated expression of 4E-BPs may display improved clinical chemopreventive benefit of metformin.
In this study, we show that several microtubule-destabilizing agents used for decades for treatment of cancer and other diseases also sensitize cancer cells to oncolytic rhabdoviruses and improve therapeutic outcomes in resistant murine cancer models. Drug-induced microtubule destabilization leads to superior viral spread in cancer cells by disrupting type I IFN mRNA translation, leading to decreased IFN protein expression and secretion. Furthermore, microtubule-destabilizing agents specifically promote cancer cell death following stimulation by a subset of infection-induced cytokines, thereby increasing viral bystander effects. This study reveals a previously unappreciated role for microtubule structures in the regulation of the innate cellular antiviral response and demonstrates that unexpected combinations of approved chemotherapeutics and biological agents can lead to improved therapeutic outcomes. Microtubule-destabilizing drugs and oncolytic viruses are two unrelated approaches to battle cancer. Here the authors show that microtubule-destabilizing drugs potentiate the efficiency of oncolytic rhabdoviruses by altering the cytokine production and response of the tumour cells.