Easy piezy: A new piezofluorochromic-aggregation-induced emission compound is described. The spectroscopic properties and morphological structures were reversibly exhibited upon pressing and annealing. The piezofluorochromic nature is believed to be generated through phase transformation. Detailed facts of importance to specialist readers are published as "Supporting Information". Such documents are peer-reviewed, but not copy-edited or typeset. They are made available as submitted by the authors. Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
Excited-state intramolecular proton transfer (ESIPT) molecules has been using as a variety of functionalityled molecular systems. To investigate the relationship between the electron-donor substitution and luminescent properties of ESIPT luminogens, four 2-(2-hydroxyphenyl) benzothiazole derivatives with donor-π-acceptor (D-π-A)-structured were synthesized. The distinct fluorescence properties of them were found to be highly dependent on the electron-donor moiety (triphenylamine and anthracenyl), its substituent position (para and meta position) and solvent polarity. The M-TPA, P-En, and M-En showed ESIPT emission in organic solvents, while the P-TPA showed intramolecular charge transfer process (ICT) emission. It is due to the synergistic effect of the aggregation-induced emission (AIE) and ESIPT, that M-TPA and M-En exhibited high solid-state quantum yields and large Stokes shifts. They were used as a probe for detecting F-, which resulted in rapid colorimetric, high sensitivity and good selectivity. The M-TPA was a turn-on fluorescent probe, which had the best detection property, and the limit of detection was as low as 11 nM. Because M-TPA displayed phenol anion emission in DMSO and F- causes the deprotonation of the M-TPA, which led to significant red shift of the absorption band and enhancement of fluorescence emission. This work provides a reliable strategy for designing high-performance fluorescent sensor via ESIPT manipulation.
A new piezofluorochromic aggregation-induced emission compound was synthesized. The compound had morphology-alterable emission property and its amorphous and crystalline aggregates with various emissions were obtained through evaporation from the solutions in different solvent systems. The spectroscopic properties and morphological structures of the compound were reversed upon pressing and annealing (or fuming). The results show that the piezofluorochromic nature is generated through crystalline–amorphous phase transformation under external pressure. The reason for the phase transformation is ascribed to the twisted conformation of the molecule which leads to poor solid molecular packing and formation of some cavities in the interfaces of lamellar layers, as confirmed by single crystal X-ray diffraction analysis.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.
An entry from the Cambridge Structural Database, the world’s repository for small molecule crystal structures. The entry contains experimental data from a crystal diffraction study. The deposited dataset for this entry is freely available from the CCDC and typically includes 3D coordinates, cell parameters, space group, experimental conditions and quality measures.