Shrinkage cracks pose significant challenges to the long-term durability of concrete structures, and it can be effectively address by incorporating various types of fibres. Synthetic textile fibres show a significant 10–50 % shrinkage reduction, while natural cellulosic fibres achieve a comparable 5–30 % reduction. This improvement is attributed to the bridging and anchorage effects between fibres and the cement matrix, enhancing overall concrete performance. However, the factors such as fibre length, diameter, volume fraction and characteristics have significant effect on shrinkage performance. This paper aims to present a comprehensive analysis of these critical mechanisms and factors that impact the shrinkage behaviour in both synthetic textile and natural cellulosic fibre-reinforced concrete. The inclusion of fibres creates a three-dimensional fibre matrix within the concrete that provide an internal effect to restrain the absorb water and it reduce the shrinkage of the concrete. Moreover, the presence of fibres introduces a secondary reinforcing mechanism to release tension during the drying process, thereby preventing crack propagation. The highly porous nature of the cellulose structure enhances the porosity of the concrete, creating cross-linked pathways for water evaporation. However, pre wetted cellulose fibre mitigates drying shrinkage by providing internal curing of the concrete. Furthermore, various physical, chemical, and combined surface modification methods have been used to improve the properties of natural fibres.
This work reports nanodiamond-silk membranes as an optical platform for biosensing and cell growth applications. The hybrid structure was fabricated through electrospinning and mimics a 2D scaffold with high porosity. The negatively charged nitrogen vacancy (NV-) centres in diamond exhibits optically detected magnetic resonance (ODMR), which enables sensing of temperature variations. The NV- centre, as reported in literature, provides a shift of 74 kHz in the ODMR frequency per degree rise in temperature. For our hybrid membranes, we have however observed that the embedded NV- centre provide a greater shift of 95±5 kHz/K in the ODMR frequency. This higher shift in the frequency will result in improved temperature sensitivity enabling the tracking of thermal variations in the biologically relevant window of 25-50 ºC. The thermal conductivity of silk and diamond-silk hybrid will be explored to investigate this enhanced temperature sensing ability of diamond. The hybrid diamond-silk membranes are found to be hydrophilic with a contact angle of (65±2)º. The biocompatibility of the membranes is tested both in vitro in skin keratinocyte (HaCaT) cells and in vivo in a live mouse wound model. The membranes did not induce any toxicity to the cell growth and survival. Moreover, we observed resistance towards the growth and attachment of bacteria.
Abstract Significant challenges arise when the human body is damaged, diseased and unable to repair itself. Current biomaterials for biomedical devices have limitations to restore function, while materials for implants and sensors often invoke a large foreign body response. Therefore, there is a need to develop suitable biomaterials in the fields of medical devices and sensors. Diamond is emerging due to its many favourable properties including biocompatibility, antimicrobial capability, antifouling properties, electrical conductivity and chemical functionalization capability. Thin film coatings of diamond can be fabricated by chemical vapour deposition, or by particle coatings with nanodiamond materials. Hybrid/composite diamond materials include soft materials such as those processed by electrospinning and melt extrusion, as well as hard materials such as those processed by additive manufacturing. Additive manufacturing is a developing area for diamond biomaterial fabrication and can include both hard and soft materials. The fabrication method used will depend on the properties required of the biomaterial, as well as the application. In this mini‐review, recent progress on using diamond in medical devices and sensors is outlined, with particular emphasis on fabrication methods. We highlight selected applications from recent literature and, in closing, make comments and suggestions to advance the field and direction of diamond application in medical devices and sensors.
Owing to several key attributes, diamond is an attractive candidate material for neural interfacing electrodes. The emergence of additive-manufacturing (AM) of diamond-based materials has addressed multiple challenges associated with the fabrication of diamond electrodes using the conventional chemical vapor deposition (CVD) approach. Unlike the CVD approach, AM methods have enabled the deposition of three-dimensional diamond-based material at room temperature. This work demonstrates the feasibility of using laser metal deposition to fabricate diamond–titanium hybrid electrodes for neuronal interfacing. In addition to exhibiting a high electrochemical capacitance of 1.1 mF cm–2 and a low electrochemical impedance of 1 kΩ cm2 at 1 kHz in physiological saline, these electrodes exhibit a high degree of biocompatibility assessed in vitro using cortical neurons. Furthermore, surface characterization methods show the presence of an oxygen-rich mixed-phase diamond–titanium surface along the grain boundaries. Overall, we demonstrated that our unique approach facilitates printing biocompatible titanium–diamond site-specific coating-free conductive hybrid surfaces using AM, which paves the way to printing customized electrodes and interfacing implantable medical devices.
Carbon dots (CDs) are luminescent carbon nanoparticles with significant potential in analytical sensing, biomedicine, and energy regeneration due to their remarkable optical, physical, biological, and catalytic properties. In light of the enduring ecological impact of non-biomass waste that persists in the environment, efforts have been made toward converting non-biomass waste, such as ash, waste plastics, textiles, and papers into CDs. This review introduces non-biomass waste carbon sources and classifies them in accordance with the 2022 Australian National Waste Report. The synthesis approaches, including pre-treatment methods, and the properties of the CDs derived from non-biomass waste are comprehensively discussed. Subsequently, we summarize the diverse applications of CDs from non-biomass waste in sensing, information encryption, LEDs, solar cells, and plant growth promotion. In the final section, we delve into the future challenges and perspectives of CDs derived from non-biomass waste, shedding light on the exciting possibilities in this emerging area of research.
In the current study, we describe the synthesis, material characteristics, and cytocompatibility of conducting poly (ɛ-caprolactone) (PCL)-based nano-composite films. Electrically conducting carbon nano-fillers (carbon nano-fiber (CNF), nano-graphite (NG), and liquid exfoliated graphite (G)) were used to prepare porous film type scaffolds using modified solvent casting methods. The electrical conductivity of the nano-composite films was increased when carbon nano-fillers were incorporated in the PCL matrix. CNF-based nano-composite films showed the highest increase in electrical conductivity. The presence of an ionic solution significantly improved the conductivity of some of the polymers, however at least 24 h was required to absorb the simulated ion solutions. CNF-based nano-composite films were found to have good thermo-mechanical properties compared to other conducting polymer films due to better dispersion and alignment in the critical direction. Increased nano-filler content increased the crystallisation temperature. Analysis of cell viability revealed no increase in cell death on any of the polymers compared to tissue culture plastic controls, or compared to PCL polymer without nano-composites. The scaffolds showed some variation when tested for PC12 cell attachment and proliferation, however all the polymers supported PC12 attachment and differentiation in the absence of cell adhesion molecules. In general, CNF-based nano-composite films with highest electrical conductivity and moderate roughness showed highest cell attachment and proliferation. These polymers are promising candidates for use in neural applications in the area of bionics and tissue engineering due to their unique properties.