Aims: Pressure in the bladder, which is a high compliance organ, is only slightly elevated to a considerable filling volume during storage. Although cystometry off-line offers mean compliance, no protocol is available for real-time assays of the dynamics of bladder compliance, and the potential impact of solifenacin and mirabegron on dynamic bladder compliance has not been established. Methods: Along with constantly infused cystometry, a pressure-volume analysis (PVA) was performed by plotting intra-vesical volume against pressure in Sprague-Dawley rats. The instant compliance was assayed as the slope of the trajectory, and the mean compliance (Cm) was determined by the slope of the line produced by regression of the data points at the end of the first, second, and third quarters of the filling phase. Results: Under a steady-state, the PVA trajectory moved clockwise which shaped coincident enclosed loops with stable compliance. Though administering to naïve animals solifenacin, but not mirabegron (both 1 × 10 −5 −1 × 10 −1 mg/kg, i.a.) decreased the peak pressure, both of these reagents exhibited acute increments in the trajectory slope and Cm of the filling phase in a dose-dependent manner (ED 50 = 1.4 × 10 −4 and 2.2 × 10 −5 mg/kg, respectively). Resembling urine frequency/urgency in OAB patients, the voiding frequency of a capacity-reduced bladder was increased in association with decreased compliance which was ameliorated by both acute solifenacin and mirabegron injections (both 1 × 10−1 mg/kg). Conclusion: In addition to their well-known anti-inotropic/relaxative effects, solifenacin, and mirabegron induce an acute increase in bladder compliance to ameliorate OAB-like syndromes. Together with time-domain cystometry, PVA offers a platform for investigating the physiology/pathophysiology/pharmacology of bladder compliance which is crucial for urine storage.
Objective The objective benefit of trans-vaginal mesh (TVM) on the storage function of the bladder in pelvic organ prolapse (POP) patients waits to be established. This study investigated if TVM improves the bladder storage by specifically focusing on its effects on the compliance. Design A retrospective cohort study Setting A medical center Population Female patients with voiding dysfunction who underwent TVM for prolapse stage ≥ II (POP Quantification system) and received urodynamic investigations before and after the operation. Methods: Data of pressure-flow cystometry and the derived pressure-volume analysis (PVA) were analyzed. Main outcome measures Bladder compliance, infused volume, and threshold pressure. Results Compared with the pre-operative control, TVM consistently and significantly increased the mean compliance of the filling stage (Cm; p<0.05 N=22); and further analyses demonstrated TVM increased the compliance of the late half (C2/2; p<0.01, N=22), while it exhibited insignificant effects on that of the early half (C1/2; p>0.05, N=22) of the filling stage. Moreover, without affecting the infused volume (Vinf; p>0.05, N=22), TVM decreased the threshold pressure (Pthd; p<0.01, N=22) and post-voided residual volume (Vres; p<0.05, N=13). Conclusions TVM improve storage function of POP patients via increasing bladder compliance, particularly at the late filling stage for it restored anatomical location and geometric conformation for bladder expansion. In addition, TVM also ameliorated voiding dysfunctions as it reduced urine retention, a symptom could lead to upper urinary tract damage and/or urinary incontinence.
Nerve injury can induce aberrant changes in the spine; these changes are due to, or at least partly governed by, transcription factors that contribute to the genesis of neuropathic allodynia. Here, we showed that spinal nerve ligation (SNL, a clinical neuropathic allodynia model) increased the expression of the transcription factor Tbx5 in the injured dorsal horn in male Sprague Dawley rats. In contrast, blocking this upregulation alleviated SNL-induced mechanical allodynia, and there was no apparent effect on locomotor function. Moreover, SNL-induced Tbx5 upregulation promoted the recruitment and interaction of GATA4 and Brd4 by enhancing its binding activity to H3K9Ac, which was enriched at the Trpv1 promotor, leading to an increase in TRPV1 transcription and the development of neuropathic allodynia. In addition, nerve injury-induced expression of Fbxo3, which abates Fbxl2-dependent Tbx5 ubiquitination, promoted the subsequent Tbx5-dependent epigenetic modification of TRPV1 expression during SNL-induced neuropathic allodynia. Collectively, our findings indicated that spinal Tbx5-dependent TRPV1 transcription signaling contributes to the development of neuropathic allodynia via Fbxo3-dependent Fbxl2 ubiquitination and degradation. Thus, we propose a potential medical treatment strategy for neuropathic allodynia by targeting Tbx5.
Spinal plasticity, a key process mediating neuropathic pain development, requires ubiquitination-dependent protein turnover. Presynaptic active zone proteins have a crucial role in regulating vesicle exocytosis, which is essential for synaptic plasticity. Nevertheless, the mechanism for ubiquitination-regulated turnover of presynaptic active zone proteins in the progression of spinal plasticity-associated neuropathic pain remains unclear. Here, after research involving Sprague Dawley rats, we reported that spinal nerve ligation (SNL), in addition to causing allodynia, enhances the Rab3-interactive molecule-1α (RIM1α), a major active zone protein presumed to regulate neural plasticity, specifically in the synaptic plasma membranes (SPMs) of the ipsilateral dorsal horn. Spinal RIM1α-associated allodynia was mediated by Fbxo3, which abates Fbxl2-dependent RIM1α ubiquitination. Subsequently, following deubiquitination, enhanced RIM1α directly binds to CaV2.2, resulting in increased CaV2.2 expression in the SPMs of the dorsal horn. While exhibiting no effect on Fbxo3/Fbxl2 signaling, the focal knockdown of spinal RIM1α expression reversed the SNL-induced allodynia and increased spontaneous EPSC (sEPSC) frequency by suppressing RIM1α-facilitated Ca V 2.2 expression in the dorsal horn. Intrathecal applications of BC-1215 (a Fbxo3 activity inhibitor), Fbxl2 mRNA-targeting small-interfering RNA, and ω-conotoxin GVIA (a Ca V 2.2 blocker) attenuated RIM1α upregulation, enhanced RIM1α expression, and exhibited no effect on RIM1α expression, respectively. These results confirm the prediction that spinal presynaptic Fbxo3-dependent Fbxl2 ubiquitination promotes the subsequent RIM1α/Ca V 2.2 cascade in SNL-induced neuropathic pain. Our findings identify a role of the presynaptic active zone protein in pain-associated plasticity. That is, RIM1α-facilitated Ca V 2.2 expression plays a role in the downstream signaling of Fbxo3-dependent Fbxl2 ubiquitination/degradation to promote spinal plasticity underlying the progression of nociceptive hypersensitivity following neuropathic injury. SIGNIFICANCE STATEMENT Ubiquitination is a well known process required for protein degradation. Studies investigating pain pathology have demonstrated that ubiquitination contributes to chronic pain by regulating the turnover of synaptic proteins. Here, we found that the spinal presynaptic active zone protein Rab3-interactive molecule-1α (RIM1α) participates in neuropathic pain development by binding to and upregulating the expression of Ca V 2.2. In addition, Fbxo3 modifies this pathway by inhibiting Fbxl2-mediated RIM1α ubiquitination, suggesting that presynaptic protein ubiquitination makes a crucial contribution to the development of neuropathic pain. Research in this area, now in its infancy, could potentially provide a novel therapeutic strategy for pain relief.
Abstract Phalaenopsis spp. represent the most popular orchids worldwide. Both P. equestris and P. aphrodite are the two important breeding parents with the whole genome sequence available. However, marker–trait association is rarely used for floral traits in Phalaenopsis breeding. Here, we analyzed markers associated with aesthetic traits of Phalaenopsis orchids by using genome-wide association study (GWAS) with the F1 population P. Intermedia of 117 progenies derived from the cross between P. aphrodite and P. equestris . A total of 113,517 single nucleotide polymorphisms (SNPs) were identified in P. Intermedia by using genotyping-by-sequencing with the combination of two different restriction enzyme pairs, Hinp1 I/ Hae III and Apek I/ Hae III. The size-related traits from flowers were negatively related to the color-related traits. The 1191 SNPs from Hinp1 I/ Hae III and 23 simple sequence repeats were used to establish a high-density genetic map of 19 homolog groups for P. equestris . In addition, 10 quantitative trait loci were highly associated with four color-related traits on chromosomes 2, 5 and 9. According to the sequence within the linkage disequilibrium regions, 35 candidate genes were identified and related to anthocyanin biosynthesis. In conclusion, we performed marker-assisted gene identification of aesthetic traits with GWAS in Phalaenopsis orchids.
Paclitaxel (PTX), which is a first-line chemotherapy drug used to treat various types of cancers, exhibits peripheral neuropathy as a common side effect that is difficult to treat. Protein arginine methyltransferase 5 (PRMT 5) is a key regulator of the chemotherapy response, as chemotherapy drugs induce PRMT5 expression. However, little is known about the PRMT5-mediated epigenetic mechanisms involved in PTX-induced neuropathic allodynia.
In addition to the well-established advantage that strengthened pelvic musculature increases urethral resistance in stress urinary incontinence (SUI) patients, intra-vaginal electrical stimulation (iVES) has been shown in preclinical studies to improve bladder capacity via the pudendal-hypogastric mechanism. This study investigated whether iVES also benefits bladder storage in SUI patients by focusing on compliance, a viscoelastic parameter critically defining the bladder's storage function, in a clinical study. Moreover, the potential involvement of stimulation-induced neuromodulation in iVES-modified compliance was investigated by comparing the therapeutic outcomes of SUI patients treated with iVES to those who underwent a trans-obturator tape (TOT) implantation surgery, where a mid-urethral sling was implanted without electric stimulation.
Cross-organ sensitization between the uterus and the lower urinary tract (LUT) underlies the high concurrence of pelvic pain syndrome and LUT dysfunctions, and yet the role of gonadal steroids is still unknown. We tested the hypothesis that cross-organ sensitization on pelvic-urethra reflex activity caused by uterine capsaicin instillation is estrous cycle dependent. When compared with the baseline reflex activity (1.00 +/- 0.00 spikes/stimulation), uterine capsaicin instillation significantly increased reflex activity (45.42 +/- 9.13 spikes/stimulation, P < 0.01, n = 7) that was corroborated by an increase in phosphorylated NMDA NR2B (P < 0.05, n = 4) but not NR2A subunit (P > 0.05, n = 4) expression. Both intrauterine pretreatment with capsazepine (5.02 +/- 2.11 spikes/stimulation, P < 0.01, n = 7) and an intrathecal injection of AP5 (3.21 +/- 0.83 spikes/stimulation, P < 0.01, n = 7) abolished the capsaicin-induced cross-organ sensitization and the increment in the phosphorylated NR2B level (P < 0.05, n = 4). The degrees of the cross-organ sensitization increased in a dose-dependent manner with the concentration of instilled capsaicin from 100 to 300 microM in both the proestrus and metestrus stages, whereas they weakened when the concentrations were higher than 1,000 microM. Moreover, the cross-organ sensitization caused by the uterine capsaicin instillation increased significantly in the rats during the proestrus stage when compared with the metestrus stage (P < 0.01, n = 7). These results suggest that estrogen levels might modulate the cross-organ sensitization between the uterus and the urethra and underlie the high concurrence of pelvic pain syndrome and LUT dysfunctions.