High resolution anorectal manometry (HRAM-WP) allows more simplified, objective, and uniform data acquisition and interpretation of the test results.To validate a HRAM under water perfusion (Alacer Biomédica) with a 24-channel probe and to compare the results of anorectal manometry with other systems.Individuals without critical evacuation disorders were selected. Patients with incontinence, anal surgery, dyssynergia or sphincter injury were excluded. The test was performed with an Alacer Biomédica 24 channel manometry system under water perfusion, with a probe configured with 6 levels of 4 radial channels, separated from each other by 0.8 mm. The mean pressures for the functional channel were determined, in states of rest (RMP), contention effort (CMP) and evacuation effort (EEMP). The pressure extension of the sphincter was also tabulated in cm. The results were compared with those available in recent literature.Fifty patients were studied (20 men; 30 women). Overall, the following results were obtained: the RMP was 76.9±3.0 mmHg, the CMP was 194.2±9.4 mmHg, and EEMP was 88.2±3.7 mmHg. When classified according to the gender, for men: RMP was 72.2±3.0 mmHg, CMP was 229.5±17 mmHg, and EEMP was 91.4±7.0. For women, RMP was 79.8±4.0 mmHg, CMP was 170.7±8, and EEMP was 86.1±4.3 mmHg. The sphincter gauge extension for both genders was 3.1±0.09 cm (men 3.3±0.1; women 3.0±0.1).Studying HRAM-WP has become much easier. Non-mobilization of the sensor causes less discomfort and artefacts with a lower assessment time. In this study, small differential values between both sexes during rest were observed, highlighting a greater containment force in men. No difference in sphincter extension was noted. The results of this study are consistent with that of existing reports and with those obtained using solid state probes.The perfusion system yielded results similar to that of solid state systems. Further studies to evaluate parameters with respect to pelvic dyssynergia and incontinence need to be conducted. Additionally, to determine if the vector volume can furnish new information in terms of functional and anatomical aspects.
Esophageal manometry is the most reliable method to evaluate esophageal motility. High resolution manometry (HRM) provides topographic contour colored plots (Clouse Plots) with simultaneous analysis from the pharynx to the stomach. Both solid state and water-perfused systems are available.This study aims to determinate the normative data for a new water-perfused HRM.HRM was made in 32 healthy volunteers after 8 hours fasting. HRM system used consisted of a 24-channel water-perfused catheter (Multiplex, Alacer Biomedica, São Paulo, Brazil). The reusable catheter is made of polyvinyl chloride (PVC) with 4.7 mm of diameter. Side holes connected to pressure transducers are spaced 2 cm for the analysis from the pharynx to the lower esophageal sphincter (LES). Holes are spaced 5 mm and 120° in a spiral disposition in the LES area. The sensors encompass 34 cm in total. Upper esophageal sphincter (UES) parameters studied were basal and relaxation pressures. Esophageal body parameters were distal contractile integral (DCI), distal latency (DL) and break. LES parameters studied were basal pressure, integrated residual pressure (IRP), total and abdominal length. Variables are expressed as mean ± standard deviation, median (interquartile range) and percentiles 5-95th.All volunteers (17 males, aged 22-62 years) completed the study and tolerated the HRM procedure well. Percentiles 5-95th range were calculated: Upper Esophageal Sphincter (UES) basal pressure 16.7-184.37 (mmHg), DL: 6.2-9.1 (s), DCI: 82.72-3836.61 (mmHg.s.cm), break: <7.19 (cm), LES basal pressure: 4.89-37.16 (mmHg), IRP: 0.55-15.45 (mmHg).The performance and normative values obtained for this low-cost water-perfused HRM seems to be adequate for clinical use.