Objectives Whole-body magnetic resonance imaging (WB-MRI) has been demonstrated to be efficient and cost-effective for cancer staging. The study aim was to develop a machine learning (ML) algorithm to improve radiologists' sensitivity and specificity for metastasis detection and reduce reading times. Materials and Methods A retrospective analysis of 438 prospectively collected WB-MRI scans from multicenter Streamline studies (February 2013–September 2016) was undertaken. Disease sites were manually labeled using Streamline reference standard. Whole-body MRI scans were randomly allocated to training and testing sets. A model for malignant lesion detection was developed based on convolutional neural networks and a 2-stage training strategy. The final algorithm generated lesion probability heat maps. Using a concurrent reader paradigm, 25 radiologists (18 experienced, 7 inexperienced in WB-/MRI) were randomly allocated WB-MRI scans with or without ML support to detect malignant lesions over 2 or 3 reading rounds. Reads were undertaken in the setting of a diagnostic radiology reading room between November 2019 and March 2020. Reading times were recorded by a scribe. Prespecified analysis included sensitivity, specificity, interobserver agreement, and reading time of radiology readers to detect metastases with or without ML support. Reader performance for detection of the primary tumor was also evaluated. Results Four hundred thirty-three evaluable WB-MRI scans were allocated to algorithm training (245) or radiology testing (50 patients with metastases, from primary 117 colon [n = 117] or lung [n = 71] cancer). Among a total 562 reads by experienced radiologists over 2 reading rounds, per-patient specificity was 86.2% (ML) and 87.7% (non-ML) (−1.5% difference; 95% confidence interval [CI], −6.4%, 3.5%; P = 0.39). Sensitivity was 66.0% (ML) and 70.0% (non-ML) (−4.0% difference; 95% CI, −13.5%, 5.5%; P = 0.344). Among 161 reads by inexperienced readers, per-patient specificity in both groups was 76.3% (0% difference; 95% CI, −15.0%, 15.0%; P = 0.613), with sensitivity of 73.3% (ML) and 60.0% (non-ML) (13.3% difference; 95% CI, −7.9%, 34.5%; P = 0.313). Per-site specificity was high (>90%) for all metastatic sites and experience levels. There was high sensitivity for the detection of primary tumors (lung cancer detection rate of 98.6% with and without ML [0.0% difference; 95% CI, −2.0%, 2.0%; P = 1.00], colon cancer detection rate of 89.0% with and 90.6% without ML [−1.7% difference; 95% CI, −5.6%, 2.2%; P = 0.65]). When combining all reads from rounds 1 and 2, reading times fell by 6.2% (95% CI, −22.8%, 10.0%) when using ML. Round 2 read-times fell by 32% (95% CI, 20.8%, 42.8%) compared with round 1. Within round 2, there was a significant decrease in read-time when using ML support, estimated as 286 seconds (or 11%) quicker ( P = 0.0281), using regression analysis to account for reader experience, read round, and tumor type. Interobserver variance suggests moderate agreement, Cohen κ = 0.64; 95% CI, 0.47, 0.81 (with ML), and Cohen κ = 0.66; 95% CI, 0.47, 0.81 (without ML). Conclusions There was no evidence of a significant difference in per-patient sensitivity and specificity for detecting metastases or the primary tumor using concurrent ML compared with standard WB-MRI. Radiology read-times with or without ML support fell for round 2 reads compared with round 1, suggesting that readers familiarized themselves with the study reading method. During the second reading round, there was a significant reduction in reading time when using ML support.
ResultsA significantly greater proportion of patients had one or more moderate-severe comorbidity in the HRT cohort compared with the CRT group (59.0% vs. 31.3%;p=0.001).Fifty five percent of patients in the CRT cohort were aged over 70 years versus 72.2% of those receiving HRT (p=0.004), with respective median ages of 70 (IQR 62-76) years and 76 (IQR 69-80) years.There were more males in the CRT cohort (73.8% vs. 52.5%;p<0.05).Three-year and median overall survival were comparable between the HRT and CRT cohorts, at 56.9% vs. 55.5% and 29 months vs. 26 months respectively; adjusted HR 0.79 (95%CI 0.48-1.28).In patients with OAC, CRT was associated with significant improvement in OS (HR 0.46 (95%CI 0.25-0.85))and progression free survival (PFS; HR 0.449 (95%CI 0.23-0.88).No difference in OS (HR 1.733 (95%CI 0.82-3.70)or PFS (HR 0.98 (95%CI 0.57-1.67))was seen by treatment type for patients with SCC.Grade III and IV toxicity was seen in 32 (40.2%) patients receiving CRT compared with 10 (16.4%) receiving HRT. ConclusionIn this lower and middle third oesophageal cancer cohort, HRT was associated with comparable OS and PFS to that seen following CRT.This was despite the relatively greater burden of comorbidity and the higher median age of the HRT cohort.Subgroup analysis by histological subtype identified superior survival outcomes from CRT in OAC.Future studies investigating RT with curative intent should address dose-escalation whilst also acknowledging the potential for heterogeneity of response by histology.
Abstract Purpose Comparative data on the impact of imaging on management is lacking for multiple myeloma. This study compared the diagnostic performance and impact on management of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) and whole-body magnetic resonance imaging (WBMRI) in treatment-naive myeloma. Methods Forty-six patients undergoing 18F-FDG PET/CT and WBMRI were reviewed by a nuclear medicine physician and radiologist, respectively, for the presence of myeloma bone disease. Blinded clinical and imaging data were reviewed by two haematologists in consensus and management recorded following clinical data ± 18F-FDG PET/CT or WBMRI. Bone disease was defined using International Myeloma Working Group (IMWG) criteria and a clinical reference standard. Per-patient sensitivity for lesion detection was established. McNemar test compared management based on clinical assessment ± 18F-FDG PET/CT or WBMRI. Results Sensitivity for bone lesions was 69.6% (32/46) for 18F-FDG PET/CT (54.3% (25/46) for PET component alone) and 91.3% (42/46) for WBMRI. 27/46 (58.7%) of cases were concordant. In 19/46 patients (41.3%) WBMRI detected more focal bone lesions than 18F-FDG PET/CT. Based on clinical data alone, 32/46 (69.6%) patients would have been treated. Addition of 18F-FDG PET/CT to clinical data increased this to 40/46 (87.0%) patients ( p = 0.02); and WBMRI to clinical data to 43/46 (93.5%) patients ( p = 0.002). The difference in treatment decisions was not statistically significant between 18F-FDG PET/CT and WBMRI ( p = 0.08). Conclusion Compared to 18F-FDG PET/CT, WBMRI had a higher per patient sensitivity for bone disease. However, treatment decisions were not statistically different and either modality would be appropriate in initial staging, depending on local availability and expertise.
Whole-body MRI (WB-MRI) could be an alternative to multimodality staging of colorectal cancer, but its diagnostic accuracy, effect on staging times, number of tests needed, cost, and effect on treatment decisions are unknown. We aimed to prospectively compare the diagnostic accuracy and efficiency of WB-MRI-based staging pathways with standard pathways in colorectal cancer.
Methods
The Streamline C trial was a prospective, multicentre trial done in 16 hospitals in England. Eligible patients were 18 years or older, with newly diagnosed colorectal cancer. Exclusion criteria were severe systemic disease, pregnancy, contraindications to MRI, or polyp cancer. Patients underwent WB-MRI, the result of which was withheld until standard staging investigations were complete and the first treatment decision made. The multidisciplinary team recorded its treatment decision based on standard investigations, then on the WB-MRI staging pathway (WB-MRI plus additional tests generated), and finally on all tests. The primary outcome was difference in per-patient sensitivity for metastases between standard and WB-MRI staging pathways against a consensus reference standard at 12 months, in the per-protocol population. Secondary outcomes were difference in per-patient specificity for metastatic disease detection between standard and WB-MRI staging pathways, differences in treatment decisions, staging efficiency (time taken, test number, and costs), and per-organ sensitivity and specificity for metastases and per-patient agreement for local T and N stage. This trial is registered with the International Standard Randomised Controlled Trial registry, number ISRCTN43958015, and is complete.
Findings
Between March 26, 2013, and Aug 19, 2016, 1020 patients were screened for eligibility. 370 patients were recruited, 299 of whom completed the trial; 68 (23%) had metastasis at baseline. Pathway sensitivity was 67% (95% CI 56 to 78) for WB-MRI and 63% (51 to 74) for standard pathways, a difference in sensitivity of 4% (−5 to 13, p=0·51). No adverse events related to imaging were reported. Specificity did not differ between WB-MRI (95% [95% CI 92–97]) and standard pathways (93% [90–96], p=0·48). Agreement with the multidisciplinary team's final treatment decision was 96% for WB-MRI and 95% for the standard pathway. Time to complete staging was shorter for WB-MRI (median, 8 days [IQR 6–9]) than for the standard pathway (13 days [11–15]); a 5-day (3–7) difference. WB-MRI required fewer tests (median, one [95% CI 1 to 1]) than did standard pathways (two [2 to 2]), a difference of one (1 to 1). Mean per-patient staging costs were £216 (95% CI 211–221) for WB-MRI and £285 (260–310) for standard pathways.
Interpretation
WB-MRI staging pathways have similar accuracy to standard pathways and reduce the number of tests needed, staging time, and cost.
Tyrosine kinase inhibitors are the first line standard of care for treatment of metastatic renal cell carcinoma (RCC). Accurate response assessment in the setting of antiangiogenic therapies remains suboptimal as standard size-related response criteria do not necessarily accurately reflect clinical benefit, as they may be less pronounced or occur later in therapy than devascularisation. The challenge for imaging is providing timely assessment of disease status allowing therapies to be tailored to ensure ongoing clinical benefit. We propose that combined assessment of morphological, physiological and metabolic imaging parameters using 18F–fluorodeoxyglucose positron emission tomography/magnetic resonance imaging (18F–FDG PET/MRI) will better reflect disease behaviour, improving assessment of response/non-response/relapse. The REMAP study is a single-centre prospective observational study. Eligible patients with metastatic renal cell carcinoma, planned for systemic therapy, with at least 2 lesions will undergo an integrated 18F–FDG PET and MRI whole body imaging with diffusion weighted and contrast-enhanced multiphasic as well as standard anatomical MRI sequences at baseline, 12 weeks and 24 weeks of systemic therapy allowing 18F–FDG standardised uptake value (SUV), apparent diffusion co-efficient (ADC) and normalised signal intensity (SI) parameters to be obtained. Standard of care contrast-enhanced computed tomography CT scans will be performed at equivalent time-points. CT response categorisation will be performed using RECIST 1.1 and alternative (modified)Choi and MASS criteria. The reference standard for disease status will be by consensus panel taking into account clinical, biochemical and conventional imaging parameters. Intra- and inter-tumoural heterogeneity in vascular, diffusion and metabolic response/non-response will be assessed by image texture analysis. Imaging will also inform the development of computational methods for automated disease status categorisation. The REMAP study will demonstrate the ability of integrated 18F–FDG PET-MRI to provide a more personalised approach to therapy. We suggest that 18F–FDG PET/MRI will provide superior sensitivity and specificity in early response/non-response categorisation when compared to standard CT (using RECIST 1.1 and alternative (modified)Choi or MASS criteria) thus facilitating more timely and better informed treatment decisions. The trial is approved by the Southeast London Research Ethics Committee reference 16/LO/1499 and registered on the NIHR clinical research network portfolio ISRCTN12114913 .
Objective To determine whether superior semicircular canal dehiscence (SSCD) is more prevalent with advancing age. Study Design Retrospective observational study. Methods High‐resolution computed‐tomographic temporal bone scans were identified for patients of all ages and analyzed by two independent assessors. Multiplanar reconstruction was applied, and the thinnest area of temporal bone overlying each superior semicircular canal (SSC) was measured. Results A sample of 121 patients was analyzed that contained an almost identical number of male and female patients. In total, 242 temporal bone images were reviewed. Patients' ages ranged between 6 and 86 years. Age was shown to have a significant linear relationship ( P < 0.001) such that for every unit increase in age the predicted thickness was reduced by 0.0047 mm. Conclusions The thickness of the SSC decreases with advancing age. Level of Evidence 4. Laryngoscope , 125:1940–1945, 2015