Background Low-density lipoprotein receptor-related protein 1 (LRP1) is a multifunctional receptor involved in receptor-mediated endocytosis and cell signaling. The aim of this study was to elucidate the expression and mechanism of LRP1 in hepatocellular carcinoma (HCC). Methods LRP1 expression in 4 HCC cell lines and 40 HCC samples was detected. After interruption of LRP1 expression in a HCC cell line either with specific lentiviral-mediated shRNA LRP1 or in the presence of the LRP1-specific chaperone, receptor-associated protein (RAP), the role of LRP1 in the migration and invasion of HCC cells was assessed in vivo and in vitro, and the expression of matrix metalloproteinase (MMP) 9 in cells and the bioactivity of MMP9 in the supernatant were assayed. The expression and prognostic value of LRP1 were investigated in 327 HCC specimens. Results Low LRP1 expression was associated with poor HCC prognosis, with low expression independently related to shortened overall survival and increased tumor recurrence rate. Expression of LRP1 in non-recurrent HCC samples was significantly higher than that in early recurrent samples. LRP1 expression in HCC cell lines was inversely correlated with their metastatic potential. After inhibition of LRP1, low-metastatic SMCC-7721 cells showed enhanced migration and invasion and increased expression and bioactivity of MMP9. Correlation analysis showed a negative correlation between LRP1 and MMP9 expression in HCC patients. The prognostic value of LRP1 expression was validated in the independent data set. Conclusions LRP1 modulated the level of MMP9 and low level of LRP1 expression was associated with aggressiveness and invasiveness in HCCs. LRP1 offered a possible strategy for tumor molecular therapy.
Background. Avatrombopag has been approved in patients who have severe thrombocytopenia (<50 × 109/L) and chronic liver disease (CLD) while receiving invasive procedures. The real-world application and effectiveness of avatrombopag in the subgroup patients with liver cancer remain unknown. Methods. Liver cancer patients (including primary liver cancer and colorectal cancer liver metastasis) who had severe thrombocytopenia and received avatrombopag were retrospectively enrolled. Avatrombopag dose, peak and absolute platelet count increase, combination treatment with other thrombopoietic agents, responder (peak count ≥50 × 109/L with absolute increase ≥20 × 109/L) rate, and anticancer treatment effect were analyzed. Thrombosis and bleeding events were assessed. Results. In total, 93 patients were enrolled, with 72 and 21 in the CLD and non-CLD groups, respectively. Patients with CLD had hepatitis B or C, larger spleen volume, and a higher cirrhosis degree. Baseline platelet counts were similar between two groups (median, 37.0 × 109/L vs. 39.0 × 109/L; ), while patients without CLD had higher peak platelet (median, 134.0 × 109/L vs. 74.0 × 109/L; ) and absolute increase (median, 101.0 × 109/L vs. 41.0 × 109/L; ) after avatrombopag treatment. The responder rate was higher in patients without CLD (100% vs. 76.4%; ). Combined avatrombopag with other thrombopoietic agents significantly increased platelet count; repeated use of avatrombopag produced similar effects with that of initial treatment. Concerning anticancer treatment effect, patients who responded to avatrombopag had a higher disease control rate. No thrombosis or hemorrhagic events were observed, even in patients with portal vein tumor thrombosis. Conclusion. Avatrombopag was safe and effective and ensured successful implementation of anticancer treatment in liver cancer patients with severe thrombocytopenia, accompanied with or without CLD.
Abstract Hepatocellular carcinoma (HCC) is one of the most fatal cancers with common features of invasion and metastasis. Recent evidence indicate that the long noncoding RNA NORAD is a potential oncogene and is significantly upregulated in several cancers. However, the general biological role and clinical value of NORAD in HCC remains unknown. Here, NORAD expression was measured in 29 paired tumor and paratumor tissues via quantitative real‐time polymerase chain reaction (qPCR). The effects of NORAD on HCC cell malignant potential were investigated via NORAD overexpression and knockdown both in vitro and in vivo. The mechanism of competitive endogenous RNAs (ceRNAs) was acquired and identified by bioinformatics analyses and luciferase assays. Moreover, the impact of NORAD level on the transforming growth factor β (TGF‐β) pathway was further determined by qPCR. We found that HCC tissues had a high level of NORAD compared with the paratumor tissues, and NORAD upregulation was associated with the shorter overall survival of patients with HCC. Furthermore, NORAD overexpression was demonstrated to promote HCC cell migration and invasion. Mechanically, NORAD might function as a ceRNA to regulate miR‐202‐5p, which served as a tumor‐suppressing microRNA via the TGF‐β pathway. We address that NORAD has a tumor‐promoting effect in HCC and describes a novel mechanism whereby NORAD regulates the TGF‐β pathway as a ceRNA of Homo sapiens (hsa)‐miR‐202‐5p.
Tetraspanin CD151 has been implicated in metastasis through forming complexes with different molecular partners. In this study, we mapped tetraspanin web proteins centered on CD151, in order to explore the role of CD151 complexes in the progression of hepatocellular carcinoma (HCC). Immunoprecipitation was used to isolate tetraspanin complexes from HCCLM3 cells using a CD151 antibody, and associated proteins were identified by mass spectrometry. The interaction of CD151 and its molecular partners, and their roles in invasiveness and metastasis of HCC cells were assayed through disruption of the CD151 network. Finally, the clinical implication of CD151 complexes in HCC patients was also examined. In this study, we identified 58 proteins, characterized the tetraspanin CD151 web, and chose integrin β1 as a main partner to further investigate. When the CD151/integrin β1 complex in HCC cells was disrupted, migration, invasiveness, secretion of matrix metalloproteinase 9, and metastasis were markedly influenced. However, both CD151 and integrin β1 expression were untouched. HCC patients with high expression of CD151/integrin β1 complex had the poorest prognosis of the whole cohort of patients. Together, our data show that CD151 acts as an important player in the progression of HCC in an integrin β1-dependent manner.
Our previous study demonstrated that heterogeneous nuclear ribonucleoprotein AB (HNRNPAB) is a key gene that facilitates metastasis of hepatocellular carcinoma (HCC). However, the molecular mechanisms behind this relationship are not fully understood. In our study, we utilized long-noncoding RNA (lncRNA) microarrays to identify a HNRNPAB-regulated lncRNA named lnc-ELF209. Our findings from chromatin immunoprecipitation assays indicate that HNRNPAB represses lnc-ELF209 transcription by directly binding to its promoter region. We also analyzed clinical samples from HCC patients and cell lines with quantitative real-time polymerase chain reactions, RNA in situ hybridization and immunohistochemistry, and found that there is a negative relationship between HNRNPAB and lnc-ELF209 expression. Up/downregulation assays and rescue assays indicate that lnc-ELF209 inhibits cell migration, invasion and epithelial-mesenchymal transition regulated by HNRNPAB. This suggests a new regulatory mechanism for HNRNPAB-promoted HCC progression. RNA pull-down and LC-MS/MS were used to determine triosephosphate isomerase, heat shock protein 90-beta and vimentin may be involved in the tumor-suppressed function of lnc-ELF209. Furthermore, we found lnc-ELF209 could stabilize TPI protein expression. We also found that lnc-ELF209 overexpression in HCCLM3 cell resulted in a lower rate of lung metastatic, which suggested a less aggressive HCC phenotype. Collectively, these findings offer new insights into the regulatory mechanisms that underlie HNRNPAB cancer-promoting activities and demonstrate that lnc-ELF209 is a HNRNPAB-regulated lncRNA that may play an important role in the inhibition of HCC progression.
Background The aim of this study is to investigate the expression profile of multiple epithelial mesenchymal transition (EMT)-related molecules in intrahepatic cholangiocarcinoma (ICC) and the related prognostic significance. Methods Immunohistochemistry was performed to determine the expression of E-cadherin, Vimentin, Snail, slug and β-catenin in a tissue microarray consisting of tumor tissues of 140 ICC patients undergoing curative resection. The correlation between the expression of these molecules and the clinicopathological characteristics of ICC patients was analyzed, and their prognostic implication was evaluated. Results Reduced E-cadherin and increased Vimentin expression, the characteristic changes of EMT, identified in 55.0% and 55.7% of primary ICCs, respectively, were correlated with lymphatic metastasis and poorer overall survival (OS) and disease-free survival (DFS) of ICCs. The overexpression of snail and nonmembranous β-catenin, which are the major regulators of the EMT, were identified in 49.2% and 45.7% of primary ICCs, while little slug expression was detected in ICCs. Cytoplasmic/nuclear β-catenin did not significantly predict worse DFS and was not related with E-cadherin loss. The overexpression of snail predicted worse OS and DFS. Snail overexpression correlated with the down-regulation of E-cadherin and the up-regulation of Vimentin. Inhibition of snail in an ICC cell line decreased the expression of E-cadherin, enhanced the expression of Vimentin and impaired the invasion and migration ability of ICC cells. Conclusions These data support the hypothesis that EMT plays vital roles in ICC progression and suggest that snail but not slug and β-catenin plays a crucial role in the EMT induction of ICC.
Probing efficacy and safety of lusutrombopag in Chinese chronic liver disease (CLD) and severe thrombocytopenia (PLT < 50 × 109/L) patients undergoing elective invasive procedures.In this double-blind, parallel-group phase 3 study, 66 patients with CLD and severe thrombocytopenia were randomized 2:1 to lusutrombopag or placebo arm treatment regimens for seven days at 9 centers in China. Responders (PLT ≥ 50 × 109/L that increased to ≥ 20 × 109/L from the baseline and not received rescue therapy for bleeding) on Day 8 (the day after seven-day treatment) were assessed. PLT ≥ 50 × 109/L on or after Day 8 and within 2 days before invasive procedure (alternative criteria for not requiring platelet transfusion) were also analyzed. Adverse events (AEs) were recorded.The proportion of responders on Day 8 was evidently higher (p = 0.0011) in the lusutrombopag group (43.2%, 19/44) versus placebo (4.5%, 1/22). And 72.7% (32/44) patients receiving lusutrombopag met the alternative criteria for not requiring platelet transfusion, while 18.2% (4/22) in the placebo group. The median maximum PLT in lusutrombopag group increased to 80.5 × 109/L, and median time to reach maximum was 14.5 days. Compared with placebo, the lusutrombopag group had a lower incidence of bleeding events (6.8% versus 13.6%), and only one patient had thrombotic-related AE. Overall, the incidence of treatment-emergent AEs was comparable between two groups.Lusutrombopag was effective in raising PLT, diminishing platelet transfusion requirement, and documented a safety profile like the placebo in CLD and severe thrombocytopenia patients in a Chinese cohort undergoing elective invasive procedures. Chinese clinical trial registration number: CTR20192384.