It is well established that tau pathology propagates in a predictable manner in Alzheimer's disease (AD). Moreover, tau accumulates in the cerebrospinal fluid (CSF) of AD's patients. The mechanisms underlying the propagation of tau pathology and its accumulation in the CSF remain to be elucidated. Recent studies have reported that human tau was secreted by neurons and non-neuronal cells when it was overexpressed indicating that tau secretion could contribute to the spreading of tau pathology in the brain and could lead to its accumulation in the CSF. In the present study, we showed that the overexpression of human tau resulted in its secretion by Hela cells. Human tau fused to the GFP tag (GFP-tau) was overexpressed in Hela cells. Forty-eight hrs after transfection, tau expression was analyzed in the cell lysate and culture medium with several anti-tau antibodies. To demonstrate that the presence of tau in the culture medium was not caused by membrane leakage from dying cells but rather by an active process of secretion, three approaches were used. First, the presence of a cytosolic protein such as tubulin in the culture medium from control and cells overexpressing tau was analyzed. Second, cell death was evaluated by the Trypan blue exclusion method and by the lactate dehydrogenase (LDH) activity measurement in the medium. Third, to demonstrate that tau was secreted by an active process by Hela cells, the secretion of tau was examined when the cells were incubated at low temperature, a condition known to decrease secretion by exocytosis. The main form of tau secreted by these cells was cleaved at the C-terminal. Secreted tau was phosphorylated at several sites as reported for tau found in the CSF. Our data also revealed that the mimicking of phosphorylation at 12 sites known to be phosphorylated in AD enhanced tau secretion. Similarly, when tau was cleaved at the C-terminal, a significant increase of tau secretion was observed. Taken together, our results indicate that hyperphosphorylation and cleavage of tau by favoring its secretion could contribute to the propagation of tau pathology in the brain and its accumulation in the CSF.
G3BP1, a target of TDP-43, is required for normal stress granule (SG) assembly, but the functional consequences of failed SG assembly remain unknown. Here, using both transformed cell lines and primary neurons, we investigated the functional impact of this disruption in SG dynamics. While stress-induced translational repression and recruitment of key SG proteins was undisturbed, depletion of G3BP1 or its upstream regulator TDP-43 disturbed normal interactions between SGs and processing bodies (PBs). This was concomitant with decreased SG size, reduced SG–PB docking, and impaired preservation of polyadenylated mRNA. Reintroduction of G3BP1 alone was sufficient to rescue all of these phenotypes, indicating that G3BP1 is essential for normal SG–PB interactions and SG function.
SNCA, the first gene associated with Parkinson′s disease, encodes the α-synuclein (α-syn) protein, the predominant component within pathological inclusions termed Lewy bodies (LBs). The presence of LBs is one of the classical hallmarks found in the brain of patients with Parkinson′s disease, and LBs have also been observed in patients with other synucleinopathies. However, the study of α-syn pathology in cells has relied largely on two-dimensional culture models, which typically lack the cellular diversity and complex spatial environment found in the brain. Here, to address this gap, we use 3D midbrain organoids (hMOs), differentiated from human induced pluripotent stem cells derived from patients carrying a triplication of the SNCA gene and from CRISPR/Cas9 corrected isogenic control iPSCs. These hMOs recapitulate key features of α-syn pathology observed in the brains of patients with synucleinopathies. In particular, we find that SNCA triplication hMOs express elevated levels of α-syn and exhibit an age-dependent increase in α-syn aggregation, manifested by the presence of both oligomeric and phosphorylated forms of α-syn. These phosphorylated α-syn aggregates were found in both neurons and glial cells and their time-dependent accumulation correlated with a selective reduction in dopaminergic neuron numbers. Thus, hMOs from patients carrying SNCA gene multiplication can reliably model key pathological features of Parkinson′s disease and provide a powerful system to study the pathogenesis of synucleinopathies.
It is well documented that neurofibrillary tangles composed of aggregated tau protein propagate in a predictable pattern in Alzheimer's disease (AD). The mechanisms underlying the propagation of tau pathology are still poorly understood. Recent studies have provided solid data demonstrating that in several neurodegenerative diseases including AD, the spreading of misfolded protein aggregates in the brain would result from prion-like cell-to-cell transmission. Consistent with this new concept, recent studies have reported that human tau can be released in the extracellular space by an active process of secretion, and can be endocytosed both in vitro and in vivo. Most importantly, it was reported that the spreading of tau pathology was observed along synaptically connected circuits in a transgenic mouse model where human tau overexpression was restricted in the entorhinal cortex. This indicates that secretion of tau by presynaptic neurons and its uptake by postsynaptic neurons could be the sequential events leading to the propagation of tau pathology in the brain.
Abstract Patient-derived organoids from induced pluripotent stem cells have emerged as a model for studying human diseases beyond conventional two-dimensional (2D) cell culture. Briefly, these three-dimensional organoids are highly complex, capable of self-organizing, recapitulate cellular architecture, and have the potential to model diseases in complex organs, such as the brain. For example, the hallmark of Parkinson’s disease - proteostatic dysfunction leading to the selective death of neurons in the substantia nigra - present a subtle distinction in cell type specificity that is simply lost in 2D cell culture models. As such, the development of robust methods to study global proteostasis and protein turnover in organoids will remain a critical need as organoid models evolve. To solve this problem, we have designed a workflow to extract proteins from organoids and measure global protein turnover using mass spectrometry and stable isotope labeling using amino acids in cell culture (SILAC). This allowed us to measure the turnover rates of 844 proteins and compare protein turnover to previously reported data in primary cell cultures and in vivo models. Taken together, this method will facilitate the study of proteostasis in organoid models of human disease and will provide an analytical and statistical framework to measure protein turnover in organoids of all cell types.
The development of brain organoids represents a major technological advance in the stem cell field, a novel bridge between traditional 2D cultures and in vivo animal models. In particular, the development of midbrain organoids containing functional dopaminergic neurons producing neuromelanin granules, a by-product of dopamine synthesis, represents a potential new model for Parkinson’s disease. To generate human midbrain organoids, we introduce specific inductive cues, at defined timepoints, during the 3D culture process to drive the stem cells towards a midbrain fate. In this method paper, we describe a standardized protocol to generate human midbrain organoids (hMOs) from induced pluripotent stem cells (iPSCs). This protocol was developed to demonstrate how human iPSCs can be successfully differentiated into numerous, high quality midbrain organoids in one batch. We also describe adaptations for cryosectioning of fixed organoids for subsequent histological analysis.
It is well established that tau pathology propagates in a predictable manner in Alzheimer's disease (AD). Moreover, tau accumulates in the cerebrospinal fluid (CSF) of AD's patients. The mechanisms underlying the propagation of tau pathology and its accumulation in the CSF remain to be elucidated. Recent studies have reported that human tau was secreted by neurons and non-neuronal cells when it was overexpressed indicating that tau secretion could contribute to the spreading of tau pathology in the brain and could lead to its accumulation in the CSF. In the present study, we showed that the overexpression of human tau resulted in its secretion by Hela cells. The main form of tau secreted by these cells was cleaved at the C-terminal. Surprisingly, secreted tau was dephosphorylated at several sites in comparison to intracellular tau which presented a strong immunoreactivity to all phospho-dependent antibodies tested. Our data also revealed that phosphorylation and cleavage of tau favored its secretion by Hela cells. Indeed, the mimicking of phosphorylation at 12 sites known to be phosphorylated in AD enhanced tau secretion. A mutant form of tau truncated at D421, the preferential cleavage site of caspase-3, was also significantly more secreted than wild-type tau. Taken together, our results indicate that hyperphosphorylation and cleavage of tau by favoring its secretion could contribute to the propagation of tau pathology in the brain and its accumulation in the CSF.
Abstract Parkinson's disease is a devastating neurodegenerative disorder characterized by loss of neuromelanin‐containing dopaminergic neurons. Novel 3D culture systems like human midbrain‐like organoids (hMOs) enable new research avenues for patient‐specific therapies, but cannot reach their full potential unless rapid optical imaging of entire organoids is enabled. Currently, hMOs have to undergo tissue clearing processes before imaging to overcome light scattering. Since tissue clearing is a lengthy chemical procedure, large ensemble studies and pharmacological longitudinal studies, which require live cultures, are impossible. To address this obstacle, raster scanning optoacoustic mesoscopy (RSOM) is considered for imaging intact hMOs. RSOM is an optical imaging technique that leverages the optoacoustic effect to overcome the need of tissue clearing. Moreover, by using tomographic principles, large specimens can be imaged within minutes. The results confirm that RSOM can image the neuromelanin distribution in complete hMOs at a single‐cell resolution. Whole hMO volumes of standard size can be imaged in 4 min. Comparison with bright‐field microscopy and histology confirms the ground truth of the RSOM images. This work opens several research opportunities regarding neuromelanin in hMOs with potential to boost research in Parkinson disease.