This work was supported by the strategic programme UID/BIA/04050/2013 (POCI-01- 0145-FEDER- 007569) through FCT I.P. and by ERDF through COMPETE2020 - POCI. The authors are grateful for funding from FCT (project “FunBioPlas” ERA-IB-2-6/0004/2014) and a fellowship to RM (SFRH-BPD/86470/2012). The authors also thank support from the COST Action MP1206.
This work was supported by FCT/MEC through Portuguese funds (PIDDAC) - PEst-OE/BIA/UI4050/2014, PEST-C/FIS/UI607/2011, Matepro - NORTE-07-0124-FEDER-000037. RM, AC and VS, acknowledge FCT for SFRH-BPD/86470/2012, SFRH/BD/75882/2011 and SFRH/BPD/63148/2009 grants, respectively. The authors also thank support from the COST Action MP1206 “Electrospun Nano-fibres for bio inspired composite materials and innovative industrial applications”.
FCT is gratefully acknowledged for financial support through Ph.D. grant SFRH/BD/108629/2015. CIQUP acknowledges financial support from FEDER/COMPETE and FCT through grants UID/QUI/00081/2013, POCI-01-0145-FEDER- 006980 and NORTE-01-0145-FEDER-000028.
In the last decades, marine macroalgae have drawn attention mainly because of their bioactive constituents. Most brown algae are distributed over coastal areas of the Atlantic Ocean, Mediterranean Sea, Aegean Sea and Black Sea, and their composition varies with endogenous and exogenous factors. Phlorotannins, fatty acids, sterols and carbohydrates are some of the compounds responsible for biological activities related to cytotoxic, antiviral, antifungal, antibacterial, antidiabetic, antioxidant and anti-inflammatory potential. In this review we seek to highlight some of the compounds responsible for these last two biological activities, which have enormous importance for the management of neurodegenerative diseases, such as Alzheimer and Parkinson’s, with neuroinflammation and oxidative stress as hallmarks. However, one of the major problems associated with treating these diseases is the highly selective blood-brain-barrier, which can be overcome with nanocarriers used as delivery systems. Weighing the risks, benefits and toxicity of the used nanoparticles is nevertheless important. We also discuss zebrafish as an upcoming adequate biological model for in vivo screening of risks and benefits of such treatment strategies. This review aims to enable researchers working in the exploitation of these macroalgae and in the use of nanocarriers to potentiate the controlled delivery of bioactive compounds.
This work reports on magnetoelectric biomaterials suitable for effective proliferation and differentiation of myoblast in a biomimetic microenvironment providing the electromechanical stimuli associated with this tissue in the human body. Magnetoelectric films are obtained by solvent casting through the combination of a piezoelectric polymer, poly(vinylidene fluoride-trifluoro-ethylene), and magnetostrictive particles (CoFe2O4). The nonpoled and poled (with negative and positive surface charge) magnetoelectric composites are used to investigate their influence on C2C12 myoblast adhesion, proliferation, and differentiation. It is demonstrated that the proliferation and differentiation of the cells are enhanced by the application of mechanical and/or electrical stimulation, with higher values of maturation index under mechanoelectrical stimuli. These results show that magnetoelectric cell stimulation is a full potential approach for skeletal muscle tissue engineering applications.