Summary Ancestral background, specifically African descent, confers higher risk for development of inhibitory antibodies to factor VIII ( FVIII ) in haemophilia A. It has been suggested that differences in the distribution of FVIII gene ( F8 ) haplotypes, and mismatch between endogenous F8 haplotypes and those comprising products used for treatment could contribute to risk. Data from the Hemophilia Inhibitor Genetics Study ( HIGS ) Combined Cohort were used to determine the association between F8 haplotype 3 (H3) vs. haplotypes 1 and 2 (H1 + H2) and inhibitor risk among individuals of genetically determined African descent. Other variables known to affect inhibitor risk including type of F8 mutation and human leucocyte antigen ( HLA ) were included in the analysis. A second research question regarding risk related to mismatch in endogenous F8 haplotype and recombinant FVIII products used for treatment was addressed. Haplotype 3 was associated with higher inhibitor risk among those genetically identified ( N = 49) as of African ancestry, but the association did not remain significant after adjustment for F8 mutation type and the HLA variables. Among subjects of all racial ancestries enrolled in HIGS who reported early use of recombinant products ( N = 223), mismatch in endogenous haplotype and the FVIII proteins constituting the products used did not confer greater risk for inhibitor development. Haplotype 3 was not an independent predictor of inhibitor risk. Furthermore, our findings did not support a higher risk of inhibitors in the presence of a haplotype mismatch between the FVIII molecule infused and that of the individual.
Genetic factors, as well as environmental factors, play a role in development of nasopharyngeal carcinoma (NPC). A number of single nucleotide polymorphisms (SNPs) have been reported to be associated with NPC. To confirm these genetic associations with NPC, two independent case-control studies from Southern China comprising 1166 NPC cases and 2340 controls were conducted. Seven SNPs in ITGA9 at 3p21.3 and 9 SNPs within the 6p21.3 HLA region were genotyped. To explore the potential clinical application of these genetic markers in NPC, we further evaluate the predictive/diagnostic role of significant SNPs by calculating the area under the curve (AUC). Results. The reported associations between ITGA9 variants and NPC were not replicated. Multiple loci of GABBR1 , HLA-F , HLA-A , and HCG9 were statistically significant in both cohorts (Pcombinedrange from 5.96 × 10 −17 to 0.02). We show for the first time that these factors influence NPC development independent of environmental risk factors. This study also indicated that the SNP alone cannot serve as a predictive/diagnostic marker for NPC. Integrating the most significant SNP with IgA antibodies status to EBV, which is presently used as screening/diagnostic marker for NPC in Chinese populations, did not improve the AUC estimate for diagnosis of NPC.
A wide range of studies has investigated the diagnostic proficiency of extracellular microRNAs (miRNAs) in hepatocellular cancer (HCC). HCC is expected to increase in Sub-Saharan Africa (SSA), due to endemic levels of viral infection (HBV/HIV), ageing and changing lifestyles. This unique aetiological background provides an opportunity for investigating potentially novel circulating miRNAs as biomarkers for HCC in a prospective study in South Africa. This study will recruit HCC patients from two South African cancer hospitals, situated in Durban and Pietermaritzburg in the province of KwaZulu-Natal. These cases will include both HBV mono-infected and HBV/HIV co-infected HCC cases. The control group will consist of two (2) age and sex-matched healthy population controls per HCC case randomly selected from a Durban based laboratory. The controls will exclude patients if they have any evidence of chronic liver disease. A standardised reporting approach will be adopted to detect, quantify and normalize the level of circulating miRNAs in the blood sera of HCC cases and their controls. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) will be employed to quantity extracellular miRNAs. Differences in concentration of relevant miRNA by case/control status will be assessed using the Wilcoxon rank-sum (Mann-Whitney U) test. Adjustment for multiple testing (Bonferroni correction), receiver operating curves (ROC) and optimal breakpoint analyses will be employed to identify potential thresholds for the differentiation of miRNA levels of HCC cases and their controls. Although there is a growing base of literature regarding the role of circulating miRNAs as biomarkers, this promising field remains a 'work in progress'. The aetiology of HBV infection in HCC is well understood, as well as it's role in miRNA deregulation, however, the mediating role of HIV infection is unknown. HCC incidence in SSA, including South Africa, is expected to increase significantly in the next decade. A combination of factors, therefore, offers a unique opportunity to identify candidate circulating miRNAs as potential biomarkers for HBV/HIV infected HCC.
Abstract Background Targeted sequencing of discrete gene sets is a cost effective strategy to screen subjects for monogenic forms of disease. One method to achieve this pairs microfluidic PCR with next generation sequencing. The PCR step of this pipeline creates challenges in accurate variant calling. This includes that most reads targeting a specific exon are duplicates that have been amplified from the PCR step. To reduce false positive variant calls from these experiments, previous studies have used threshold-based filtering of alternative allele depth ratio and manual inspection of the alignments. However even after manual inspection and filtering, many variants fail to be validated via Sanger sequencing. To improve the accuracy of variant calling from these experiments, we are challenged to design a variant filtering strategy that sufficiently models microfluidic PCR-specific issues. Results We developed an open source variant filtering pipeline, targeted sequencing support vector machine (“tarSVM”), that uses a Support Vector Machine (SVM) and a new score the normalized allele dosage test to identify high quality variants from microfluidic PCR data. tarSVM maximizes training knowledge by selecting variants that are likely true and likely false variants by incorporating knowledge from the 1000 Genomes and the Exome Aggregation Consortium projects. tarSVM improves on previous approaches by synthesizing variant features from the Genome Analysis Toolkit and allele dosage information. We compared the accuracy of tarSVM versus existing variant quality filtering strategies on two cohorts ( n = 474 and n = 1152), and validated our method on a third cohort ( n = 75). In the first cohort, our method achieved 84.5 % accuracy of predicting whether or not a variant would be validated with Sanger sequencing versus 78.8 % for the second most accurate method. In the second cohort, our method had an accuracy of 73.3 %, versus 61.5 % for the second best method. Finally, our method had a false discovery rate of 5 % for the validation cohort. Conclusions tarSVM increases the accuracy of variant calling when using microfluidic PCR based targeted sequencing approaches. This results in higher confidence downstream analyses, and ultimately reduces the costs Sanger validation. Our approach is less labor intensive than existing approaches, and is available as an open source pipeline for read trimming, aligning, variant calling, and variant quality filtering on GitHub at https://github.com/christopher-gillies/TargetSpecificGATKSequencingPipeline .
The incidence and mortality of hepatitis B virus (HBV)-associated hepatocellular carcinoma (HBV-HCC) is an intractable public health problem in developing countries that is compounded by limited early detection and therapeutic options. Despite the early promise of utilizing the regulatory role of miRNA in liver cancer, this field remains largely in the work-in-progress phase. This exploratory review paper adopts a broad focus in order to collate evidence of the regulatory role of miRNA in each stage of the HBV-HCC continuum. This includes the regulatory role of miRNA in early HBV infection, chronic inflammation, fibrosis/cirrhosis, and the onset of HCC. The paper specifically investigates HBV dysregulated miRNA that influence the expression of the host/HBV genome in HBV-HCC pathogenesis and fully acknowledges that this does not cover the full spectrum of dysregulated miRNA. The sheer number of dysregulated miRNA in each phase support a hypothesis that future therapeutic interventions will need to consider incorporating multiple miRNA panels.
Focal segmental glomerulosclerosis (FSGS) is a syndrome that involves kidney podocyte dysfunction and causes chronic kidney disease. Multiple factors including chemical toxicity, inflammation, and infection underlie FSGS; however, highly penetrant disease genes have been identified in a small fraction of patients with a family history of FSGS. Variants of apolipoprotein L1 (APOL1) have been linked to FSGS in African Americans with HIV or hypertension, supporting the proposal that genetic factors enhance FSGS susceptibility. Here, we used sequencing to investigate whether genetics plays a role in the majority of FSGS cases that are identified as primary or sporadic FSGS and have no known cause. Given the limited number of biopsy-proven cases with ethnically matched controls, we devised an analytic strategy to identify and rank potential candidate genes and used an animal model for validation. Nine candidate FSGS susceptibility genes were identified in our patient cohort, and three were validated using a high-throughput mouse method that we developed. Specifically, we introduced a podocyte-specific, doxycycline-inducible transactivator into a murine embryonic stem cell line with an FSGS-susceptible genetic background that allows shRNA-mediated targeting of candidate genes in the adult kidney. Our analysis supports a broader role for genetic susceptibility of both sporadic and familial cases of FSGS and provides a tool to rapidly evaluate candidate FSGS-associated genes.
Abstract Apolipoprotein L1 ( APOL1 ) coding variants, termed G1 and G2, are established genetic risk factors for a growing spectrum of diseases, including kidney disease, in individuals of African ancestry. Evidence suggests that the risk variants, which show a recessive mode of inheritance, lead to toxic gain-of-function changes of the APOL1 protein. Disease occurrence and presentation vary, likely due to modifiers or second hits. To understand the role of the epigenetic landscape in relation to APOL1 risk variants, we performed methylation quantitative trait locus (meQTL) analysis to identify differentially methylated CpGs influenced by APOL1 risk variants in 611 African American individuals. We identified five CpGs that were significantly associated with APOL1 risk alleles in discovery and replication studies, and one CpG- APOL1 association was independent of other genomic variants. Our study highlights proximal DNA methylation alterations that may help explain the variable disease risk and clinical manifestation of APOL1 variants.