Abstract Background Semiquantitative methods such as the standardized uptake value ratio (SUVR) require normalization of the radiotracer activity to a reference tissue to monitor changes in the accumulation of amyloid-β (Aβ) plaques measured with positron emission tomography (PET). The objective of this study was to evaluate the effect of reference tissue normalization in a test–retest 18 F-florbetapir SUVR study using cerebellar gray matter, white matter (two different segmentation masks), brainstem, and corpus callosum as reference regions. Methods We calculated the correlation between 18 F-florbetapir PET and concurrent cerebrospinal fluid (CSF) Aβ 1–42 levels in a late mild cognitive impairment cohort with longitudinal PET and CSF data over the course of 2 years. In addition to conventional SUVR analysis using mean and median values of normalized brain radiotracer activity, we investigated a new image analysis technique—the weighted two-point correlation function (wS 2 )—to capture potentially more subtle changes in Aβ-PET data. Results Compared with the SUVRs normalized to cerebellar gray matter, all cerebral-to-white matter normalization schemes resulted in a higher inverse correlation between PET and CSF Aβ 1–42 , while the brainstem normalization gave the best results (high and most stable correlation). Compared with the SUVR mean and median values, the wS 2 values were associated with the lowest coefficient of variation and highest inverse correlation to CSF Aβ 1–42 levels across all time points and reference regions, including the cerebellar gray matter. Conclusions The selection of reference tissue for normalization and the choice of image analysis method can affect changes in cortical 18 F-florbetapir uptake in longitudinal studies.
To assess white matter integrity in patients with essential tremor (ET) and Parkinson disease (PD) with moderate to severe motor impairment.Sedated participants with ET (n = 57) or PD (n = 99) underwent diffusion tensor imaging (DTI) and fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity values were computed. White matter tracts were defined using 3 well-described atlases. To determine candidate white matter regions that differ between ET and PD groups, a bootstrapping analysis was applied using the least absolute shrinkage and selection operator. Linear regression was applied to assess magnitude and direction of differences in DTI metrics between ET and PD populations in the candidate regions.Fractional anisotropy values that differentiate ET from PD localize primarily to thalamic and visual-related pathways, while diffusivity differences localized to the cerebellar peduncles. Patients with ET exhibited lower fractional anisotropy values than patients with PD in the lateral geniculate body (p < 0.01), sagittal stratum (p = 0.01), forceps major (p = 0.02), pontine crossing tract (p = 0.03), and retrolenticular internal capsule (p = 0.04). Patients with ET exhibited greater radial diffusivity values than patients with PD in the superior cerebellar peduncle (p < 0.01), middle cerebellar peduncle (p = 0.05), and inferior cerebellar peduncle (p = 0.05).Regionally, distinctive white matter microstructural values in patients with ET localize to the cerebellar peduncles and thalamo-cortical visual pathways. These findings complement recent functional imaging studies in ET but also extend our understanding of putative physiologic features that account for distinctions between ET and PD.
Peripheral nerve repair is limited by Wallerian degeneration coupled with the slow and inconsistent rates of nerve regrowth. In more proximal injuries, delayed nerve regeneration can cause debilitating muscle atrophy. Topical application of polyethylene glycol (PEG) during neurorrhaphy facilitates the fusion of severed axonal membranes, immediately restoring action potentials across the coaptation site. In preclinical animal models, PEG fusion resulted in remarkable early functional recovery.
It is estimated that short association fibers running immediately beneath the cortex may make up as much as 60 % of the total white matter volume. However, these have been understudied relative to the long-range association, projection, and commissural fibers of the brain. This is largely because of limitations of diffusion MRI fiber tractography, which is the primary methodology used to non-invasively study the white matter connections. Inspired by recent anatomical considerations and methodological improvements in superficial white matter (SWM) tractography, we aim to characterize changes in these fiber systems in cognitively normal aging, which provide insight into the biological foundation of age-related cognitive changes, and a better understanding of how age-related pathology differs from healthy aging. To do this, we used three large, longitudinal and cross-sectional datasets (N = 1293 subjects, 2711 sessions) to quantify microstructural features and length/volume features of several SWM systems. We find that axial, radial, and mean diffusivities show positive associations with age, while fractional anisotropy has negative associations with age in SWM throughout the entire brain. These associations were most pronounced in the frontal, temporal, and temporoparietal regions. Moreover, measures of SWM volume and length decrease with age in a heterogenous manner across the brain, with different rates of change in inter-gyri and intra-gyri SWM, and at slower rates than well-studied long-range white matter pathways. These features, and their variations with age, provide the background for characterizing normal aging, and, in combination with larger association pathways and gray matter microstructural features, may provide insight into fundamental mechanisms associated with aging and cognition.
The stop-signal task is a well-established assessment of response inhibition, and in humans, proficiency is linked to dorsal striatum D 2 receptor availability. Parkinson's disease (PD) is characterized by changes to efficiency of response inhibition. Here, we studied 17 PD patients (6 female and 11 male) using the stop-signal paradigm in a single-blinded d -amphetamine (dAMPH) study. Participants completed [ 18 F]fallypride positron emission topography (PET) imaging in both placebo and dAMPH conditions. A voxel-wise analysis of the relationship between binding potential (BP ND ) and stop-signal reaction time (SSRT) revealed that faster SSRT is associated with greater D 2 -like BP ND in the amygdala and hippocampus (right cluster q FDR-corr = 0.026, left cluster q FDR-corr = 0.002). A region of interest (ROI) examination confirmed this association in both the amygdala (coefficient = −48.26, p = 0.005) and hippocampus (coefficient = −104.94, p = 0.007). As healthy dopaminergic systems in the dorsal striatum appear to regulate response inhibition, we interpret our findings in PD to indicate either nigrostriatal damage unmasking a mesolimbic contribution to response inhibition, or a compensatory adaptation from the limbic and mesial temporal dopamine systems. These novel results expand the conceptualization of action-control networks, whereby limbic and motor loops may be functionally connected. SIGNIFICANCE STATEMENT While Parkinson's disease (PD) is characteristically recognized for its motor symptoms, some patients develop impulsive and compulsive behaviors (ICBs), manifested as repetitive and excessive participation in reward-driven activities, including sex, gambling, shopping, eating, and hobbyism. Such cognitive alterations compel a consideration of response inhibition in PD. To investigate inhibitory control and assess the brain regions that may participate, we assessed PD patients using a single-blinded d -amphetamine (dAMPH) study, with [ 18 F]fallypride positron emission topography (PET) imaging, and stop-signal task performance. We find a negative relationship between D 2 -like binding in the mesial temporal region and top-signal reaction time (SSRT), with greater BP ND associated with a faster SSRT. These discoveries indicate a novel role for mesolimbic dopamine in response inhibition, and advocate for limbic regulation of action control in this clinical population.
Individuals with cerebellar ataxia (CA) can develop impulsive behavioral symptoms, often resulting in negative interpersonal consequences, detrimentally affecting their quality of life. Limited evidence exists concerning impulsivity in CA and its associated behavioral changes. We assessed impulsive traits in CA using the Barratt Impulsivity Scale (BIS-11) and compared them with those of Parkinson disease (PD) to investigate the differences in the impulsive trait profiles between CA and PD.
Predicting biochemical recurrence of prostate cancer is imperative for initiating early treatment, which can improve the outcome of cancer treatment. However, because of inter- and intrareader variability in interpretation of F-18 fluciclovine positron emission tomography/computed tomography (PET/CT), it is difficult to reliably discern between necrotic tissue owing to radiation therapy and tumor tissue. Our goal is to develop a computational methodology using Haralick texture analysis that can be used as an adjunct tool to improve and standardize the interpretation of F-18 fluciclovine PET/CT to identify biochemical recurrence of prostate cancer. Four main textural features were chosen by variable selection procedure using least absolute shrinkage and selection operator logistic regression and bootstrapping, and then included as predictors in subsequent logistic ridge regression model for prediction (n = 28). Age at prostatectomy, prostate-specific antigen (PSA) level before the PET/CT imaging, and number of days between the prostate-specific antigen measurement and PET/CT imaging were also included in the prediction model. The overfitting-corrected area under the curve and Brier score of the proposed model were 0.94 (95% CI: 0.81, 1.00) and 0.12 (95% CI: 0.03, 0.23), respectively. Compared with a model with textural features (TI model) and that with only clinical information (CI model), the proposed model achieved 2% and 32% increase in AUC and 8% and 48% reduction in Brier score, respectively. Combining Haralick textural features based on the PET/CT imaging data with clinical information shows a high potential of enhanced prediction of the biochemical recurrence of prostate cancer.