Heterostructures between topological insulators (TI) and magnetic insulators represent a pathway to realize the quantum anomalous Hall effect (QAHE). Using density functional theory based systematic screening and investigation of thermodynamic, magnetic and topological properties of heterostructures, we demonstrate that forming a type-I heterostructure between a wide gap antiferromagnetic insulator Cr$_2$O$_3$ and a TI-film, such as Sb$_2$Te$_3$, can lead to pinning of the Fermi-level at the center of the gap, even when magnetically doped. Cr-doping in the heterostructure increases the gap to $\sim$ 64.5 meV, with a large Zeeman energy from the interfacial Cr dopants, thus overcoming potential metallicity due to band bending effects. By fitting the band-structure around the Fermi-level to a 4-band k.p model Hamiltonian, we show that Cr doped Sb$_2$Te$_3$/Cr$_2$O$_3$ is a Chern insulator with a Chern number C = -1. Transport calculations further show chiral edge-modes localized at the top/bottom of the TI-film to be the dominant current carriers in the material. Our predictions of a large interfacial magnetism due to Cr-dopants, that coupled antiferromagnetically to the AFM substrate is confirmed by our polarised neutron reflectometry measurements on MBE grown Cr doped Sb$_2$Te$_3$/Cr$_2$O$_3$ heterostructures, and is consistent with a positive exchange bias measured in such systems recently. Consequently, Cr doped Sb$_2$Te$_3$/Cr$_2$O$_3$ heterostructure represents a promising platform for the development of functional topological magnetic devices, with high tunability.
Interlayer exchange coupling (IEC) between two magnetic layers sandwiched by a nonmagnetic spacer layer plays a critical role in shaping the magnetic properties of such heterostructures. The quantum anomalous Hall (QAH) effect has been realized in a structure composed of two magnetically doped topological insulator (TI) layers separated by an undoped TI layer. The quantized Hall conductance observed in this sandwich heterostructure originates from the combined contribution of the top and bottom surface states. In this work, we employ molecular beam epitaxy to synthesize a series of magnetic TI sandwiches with varying thicknesses of the middle undoped TI layer. The well-quantized QAH effect is observed in all these samples and its critical behavior is modulated by the IEC between the top and bottom magnetic TI layers. Near the plateau phase transition (PPT), we find that thinner QAH samples exhibit a two-dimensional critical metal behavior with nearly temperature-independent longitudinal resistance, whereas thicker QAH samples behave as a three-dimensional insulator with reduced longitudinal resistance at higher temperatures. The IEC-induced critical-metal-to-insulator transition in the QAH PPT regime can be understood through a two-channel Chalker-Coddington network model by tuning inter-channel tunneling. The agreement between experiment and theory strongly supports the QAH PPT within the Kosterlitz-Thouless framework, where the critical metal and disordered insulator phases exist in bound and unbound states of vortex-antivortex pairs, respectively.
Intrinsic magnetic topological insulators have emerged as a promising platform to study the interplay between topological surface states and ferromagnetism. This unique interplay can give rise to a variety of exotic quantum phenomena, including the quantum anomalous Hall effect and axion insulating states. Here, utilizing molecular beam epitaxy (MBE), we present a comprehensive study of the growth of high-quality MnBi2Te4 thin films on Si (111), epitaxial graphene, and highly ordered pyrolytic graphite substrates. By combining a suite of in-situ characterization techniques, we obtain critical insights into the atomic-level control of MnBi2Te4 epitaxial growth. First, we extract the free energy landscape for the epitaxial relationship as a function of the in-plane angular distribution. Then, by employing an optimized layer-by-layer growth, we determine the chemical potential and Dirac point of the thin film at different thicknesses. Overall, these results establish a foundation for understanding the growth dynamics of MnBi2Te4 and pave the way for the future applications of MBE in emerging topological quantum materials.
We report compelling evidence of an emergent topological Hall effect (THE) from chiral bubbles in a two-dimensional uniaxial ferromagnet, V-doped Sb2Te3 heterostructure. The sign of THE signal is determined by the net curvature of domain walls in different domain configurations, and the strength of THE signal is correlated with the density of nucleation or pinned bubble domains. The experimental results are in good agreement with the integrated linear transport and Monte Carlo simulations, corroborating the emergent gauge field at chiral magnetic bubbles. Our findings not only reveal a general mechanism of THE in two-dimensional ferromagnets but also pave the way for the creation and manipulation of topological spin textures for spintronic applications.
The quantum anomalous Hall (QAH) state is a two-dimensional topological insulating state that has quantized Hall resistance of h/Ce2 and vanishing longitudinal resistance under zero magnetic field, where C is called the Chern number. The QAH effect has been realized in magnetic topological insulators (TIs) and magic-angle twisted bilayer graphene. Despite considerable experimental efforts, the zero magnetic field QAH effect has so far been realized only for C = 1. Here we used molecular beam epitaxy to fabricate magnetic TI multilayers and realized the QAH effect with tunable Chern number C up to 5. The Chern number of these QAH insulators is tuned by varying the magnetic doping concentration or the thickness of the interior magnetic TI layers in the multilayer samples. A theoretical model is developed to understand our experimental observations and establish phase diagrams for QAH insulators with tunable Chern numbers. The realization of QAH insulators with high tunable Chern numbers facilitates the potential applications of dissipationless chiral edge currents in energy-efficient electronic devices and opens opportunities for developing multi-channel quantum computing and higher-capacity chiral circuit interconnects.
The plateau-to-plateau transition in quantum Hall effect under high magnetic fields is a celebrated quantum phase transition between two topological states. It can be achieved by either sweeping the magnetic field or tuning the carrier density. The recent realization of the quantum anomalous Hall (QAH) insulators with tunable Chern numbers introduces the channel degree of freedom to the dissipation-free chiral edge transport and makes the study of the quantum phase transition between two topological states under zero magnetic field possible. Here, we synthesized the magnetic topological insulator (TI)/TI pentalayer heterostructures with different Cr doping concentrations in the middle magnetic TI layers using molecular beam epitaxy. By performing transport measurements, we found a potential plateau phase transition between C=1 and C=2 QAH states under zero magnetic field. In tuning the transition, the Hall resistance monotonically decreases from h/e^{2} to h/2e^{2}, concurrently, the longitudinal resistance exhibits a maximum at the critical point. Our results show that the ratio between the Hall resistance and the longitudinal resistance is greater than 1 at the critical point, which indicates that the original chiral edge channel from the C=1 QAH state coexists with the dissipative bulk conduction channels. Subsequently, these bulk conduction channels appear to self-organize and form the second chiral edge channel in completing the plateau phase transition. Our study will motivate further investigations of this novel Chern number change-induced quantum phase transition and advance the development of the QAH chiral edge current-based electronic and spintronic devices.
Doping a topological insulator (TI) film with transition metal ions can break its time-reversal symmetry and lead to the realization of the quantum anomalous Hall (QAH) effect. Prior studies have shown that the longitudinal resistance of the QAH samples usually does not vanish when the Hall resistance shows a good quantization. This has been interpreted as a result of the presence of possible dissipative conducting channels in magnetic TI samples. By studying the temperature- and magnetic-field-dependence of the magnetoresistance of a magnetic TI sandwich heterostructure device, we demonstrate that the predominant dissipation mechanism in thick QAH insulators can switch between nonchiral edge states and residual bulk states in different magnetic-field regimes. The interactions between bulk states, chiral edge states, and nonchiral edge states are also investigated. Our Letter provides a way to distinguish between the dissipation arising from the residual bulk states and nonchiral edge states, which is crucial for achieving true dissipationless transport in QAH insulators and for providing deeper insights into QAH-related phenomena.