Abstract Objective Chimeric antigen receptor T (CAR-T) cell therapies already made an impact on the treatment of B cell malignancies. Although CAR-T cell therapies are promising, there are concerns with commercial products regarding their affordability and sustainability. In this preliminary study, results of the first productional and clinical data of academic CAR-T cell (ISIKOK-19) from Turkey are presented. Materials and Methods A pilot clinical trial ( NCT04206943 ) designed to assess the safety and feasibility of ISIKOK-19 T-cell therapy in patients with relapsed and refractory CD19+ tumors was conducted and participating patients received ISIKOK-19 infusions between October 2019 and July 2021. Production data of the first 8 patients and the clinical outcome of 7 patients who received ISIKOK-19 cell infusion is presented in this study. Results Nine patients were enrolled for the trial (ALL n=5 and NHL n=4) but only 7 patients could receive the treatment. Two out of three ALL patients and three out of four NHL patients had complete/partial response (ORR 72%). Four patients (57%) had CAR-T-related toxicities (CRS, CRES, and pancytopenia). Two patients were unresponsive and had progressive disease following CAR-T therapy. Two patients with partial response had progressive disease during follow-up. Conclusion Production efficacy and fulfilling the criteria of quality control were satisfactory for academic production. Response rates and toxicity profiles are acceptable for this heavily pretreated/refractory patient group. ISIKOK-19 cells appear to be a safe, economical, and efficient treatment option for CD19 positive tumors. The findings of this study need to be supported by the currently ongoing clinical trial of ISIKOK-19.
Duchenne Muscular Dystrophy (DMD) results in a deficiency of dystrophin expression in patient muscle fibers, leading to progressive muscle degeneration. Treatment of DMD has undertaken current transformation with the advancement of novel gene therapy and molecular biology techniques, which are secure, well-tolerated, and effective therapeutic approaches.DMD gene therapies have mainly focused on young DMD patients as in vivo animal model trials have been performed in 0-1-month DMD mice. However, it has not yet been answered how micro-dystrophin encoding lentiviral treatment affects Dystrophin expression and DMD symptoms in 10-month mdx mice.We planned to integrate the micro-Dystrophin gene sequence into the muscle cells by viral transfer, using micro-Dystrophin-encoding lentivirus to reduce the dystrophic pathology in late-stage dmd mice. The histopathological and physiological-functional regeneration activities of the lentiviralmicro- Dystrophin gene therapy methods were compared, along with changes in temporal Dystrophin expression and their functionality, toxicity, and gene expression level.Here, we showed that the micro-dystrophin transgene transfers intramuscularly and intraperitoneally in late-stage dmd-mdx-4cv mice restored dystrophin expression in the skeletal and cardiac muscle (p <0.001). Furthermore, motor performance analysis, including hanging and tracking tests, improved statistically significantly after the treatment (p <0.05).Consequently, this study suggests that patients in the late stages of muscular dystrophy can benefit from lentiviral micro-dystrophin gene therapies to present an improvement in dystrophic muscle pathology.
Abstract BACKGROUND The efficacy of SARS-CoV2 single donor convalescent plasma (CP) varied according to the application time and the amount of antibody that is administered. Single donor CP has some drawbacks; such as the insufficient levels of neutralizing antibody activities, the requirements of blood group compatibility, and the risk of infection transmission. In this study, the safety and efficacy of pathogen inactivated, isohemagglutinin-depleted (concentrated) and pooled CP product was investigated. METHODS A total of sixteen patients were treated with either single donor CP (n=9) or pathogen-free, concentrated, pooled CP (ACB-IP 1.0) (n=7). RESULTS Five out of six single donor plasma SARS-CoV2 antibody titers remained below 12 s/co, but the antibody titers of all ACB-IP 1.0 plasma were above 12 s/co. SARS-CoV2 total antibody titers of ACB-IP 1.0 plasma were statistically higher than the antibody titers of single donor CP. Mean total plasma neutralizing antibody activity of ACB-IP 1.0 plasma (1.5421) was found statistically higher than single donor CP (0.9642) in 1:256 dilution (ρ<0.01) The mortality rates of the patients treated with ACB-IP 1.0 plasma were statistically lower (p< 0.05) than the patients treated with single donor CP. The administration of either single donor CP or ACB-IP 1.0 plasma to the patients within eight days significantly shortened the length of hospitalization (ρ< 0.05). CONCLUSION The present study established ACB-IP 1.0 plasma product as a safe and potentially effective treatment for COVID-19, allowing rapid access to patients in need. TRIAL REGISTRATION Trial Registration Number: NCT04769245 Trial Registration Date: 17.03.2021
Abstract The SARS-CoV-2 virus caused the most severe pandemic around the world, and vaccine development for urgent use became a crucial issue. Inactivated virus formulated vaccines such as Hepatitis A and smallpox proved to be reliable approaches for immunization for prolonged periods. In this study, a gamma-irradiated inactivated virus vaccine does not require an extra purification process, unlike the chemically inactivated vaccines. Hence, the novelty of our vaccine candidate (OZG-38.61.3) is that it is a non-adjuvant added, gamma-irradiated, and intradermally applied inactive viral vaccine. Efficiency and safety dose (either 10 13 or 10 14 viral RNA copy per dose) of OZG-38.61.3 was initially determined in BALB/c mice. This was followed by testing the immunogenicity and protective efficacy of the vaccine. Human ACE2-encoding transgenic mice were immunized and then infected with the SARS-CoV-2 virus for the challenge test. This study shows that vaccinated mice have lowered SARS-CoV-2 viral RNA copy numbers both in oropharyngeal specimens and in the histological analysis of the lung tissues along with humoral and cellular immune responses, including the neutralizing antibodies similar to those shown in BALB/c mice without substantial toxicity. Subsequently, plans are being made for the commencement of Phase 1 clinical trial of the OZG-38.61.3 vaccine for the COVID-19 pandemic.
Abstract COVID-19 outbreak caused by SARS-CoV-2 created an unprecedented health crisis since there is no vaccine for this novel virus. Therefore, SARS-CoV-2 vaccines have become crucial for reducing morbidity and mortality. In this study, in vitro and in vivo safety and efficacy analyzes of lyophilized vaccine candidates inactivated by gamma-irradiation were performed. The candidate vaccines in this study were OZG-3861 version 1 (V1), an inactivated SARS-CoV-2 virus vaccine, and SK-01 version 1 (V1), a GM-CSF adjuvant added vaccine. The candidate vaccines were applied intradermally to BALB/c mice to assess toxicity and immunogenicity. Preliminary results in vaccinated mice are reported in this study. Especially, the vaccine models containing GM-CSF caused significant antibody production with neutralization capacity in absence of the antibody-dependent enhancement feature, when considered in terms of T and B cell responses. Another important finding was that the presence of adjuvant was more important in T cell in comparison with B cell response. Vaccinated mice showed T cell response upon restimulation with whole inactivated SARS-CoV-2 or peptide pool. This study shows that the vaccines are effective and leads us to start the challenge test to investigate the gamma-irradiated inactivated vaccine candidates for infective SARS-CoV-2 virus in humanized ACE2 + mice.
Abstract The SARS-CoV-2 virus caused the most severe pandemic around the world, and vaccine development for urgent use became a crucial issue. Inactivated virus formulated vaccines such as Hepatitis A, oral polio vaccine, and smallpox proved to be reliable approaches for immunization for prolonged periods. During the pandemic, we produced an inactivated SARS-CoV-2 vaccine candidate, having the advantages of being manufactured rapidly and tested easily in comparison with recombinant vaccines. In this study, an inactivated virus vaccine that includes a gamma irradiation process for the inactivation as an alternative to classical chemical inactivation methods so that there is no extra purification required has been optimized. The vaccine candidate (OZG-38.61.3) was then applied in mice by employing the intradermal route, which decreased the requirement of a higher concentration of inactivated virus for proper immunization, unlike most of the classical inactivated vaccine treatments. Hence, the novelty of our vaccine candidate (OZG-38.61.3) is that it is a non-adjuvant added, gamma-irradiated, and intradermally applied inactive viral vaccine. Efficiency and safety dose (either 10 13 or 10 14 viral copy per dose) of OZG-38.61.3 was initially determined in Balb/c mice. This was followed by testing the immunogenicity and protective efficacy of OZG-38.61.3. Human ACE2-encoding transgenic mice were immunized and then infected with a dose of infective SARS-CoV-2 virus for the challenge test. Findings of this study show that vaccinated mice have lower SARS-CoV-2 viral copy number in oropharyngeal specimens along with humoral and cellular immune responses against the SARS-CoV-2, including the neutralizing antibodies similar to those shown in Balb/c mice without substantial toxicity. Subsequently, plans are being made for the commencement of Phase 1 clinical trial of the OZG-38.61.3 vaccine for the COVID-19 pandemic.
c-Myc plays a major role in the maintenance of glycolytic metabolism and hematopoietic stem cell (HSC) quiescence. Targeting modulators of HSC quiescence and metabolism could lead to HSC cell cycle entry with concomitant expansion. Here we show that c-Myc inhibitor 10074-G5 treatment leads to 2-fold increase in murine LSKCD34low HSC compartment post 7 days. In addition, c-Myc inhibition increases CD34+ and CD133+ human HSC number. c-Myc inhibition leads to downregulation of glycolytic and cyclin-dependent kinase inhibitor (CDKI) gene expression ex vivo and in vivo. In addition, c-Myc inhibition upregulates major HDR modulator Rad51 expression in hematopoietic cells. Besides, c-Myc inhibition does not alter proliferation kinetics of endothelial cells, fibroblasts or adipose derived mesenchymal stem cells, however; it limits bone marrow derived mesenchymal stem cell proliferation. We further demonstrate that a cocktail of c-Myc inhibitor 10074-G5 along with tauroursodeoxycholic acid (TUDCA) and i-NOS inhibitor L-NIL provides a robust HSC maintenance and expansion ex vivo as evident by induction of all stem cell antigens analyzed. Intriguingly, the cocktail of c-Myc inhibitor 10074-G5, TUDCA and L-NIL improves HDR related gene expression. These findings provide tools to improve ex vivo HSC maintenance and expansion, autologous HSC transplantation and gene editing through modulation of HSC glycolytic and HDR pathways.
Relapsed and refractory CD19-positive B-cell acute lymphoblastic leukemia (ALL) and non-Hodgkin lymphoma (NHL) are the focus of studies on hematological cancers. Treatment of these malignancies has undergone recent transformation with the development of new gene therapy and molecular biology techniques, which are safer and well-tolerated therapeutic approaches. The CD19 antigen is the most studied therapeutic target in these hematological cancers. This study reports the results of clinical-grade production, quality control, and in vivo efficacy processes of ISIKOK-19 cells as the first academic clinical trial of CAR-T cells targeting CD19-expressing B cells in relapsed/refractory ALL and NHL patients in Turkey.