Wounding triggers organ regeneration in many plant species, and application of plant hormones, such as auxin and cytokinin, enhances their regenerative capacities in tissue culture. Recent studies have identified several key players mediating wound- and/or plant hormone-induced cellular reprogramming, but the global architecture of gene regulatory relationships underlying plant cellular reprogramming is still far from clear. In this study, we uncovered a gene regulatory network (GRN) associated with plant cellular reprogramming by using an enhanced yeast one-hybrid (eY1H) screen systematically to identify regulatory relationships between 252 transcription factors (TFs) and 48 promoters. Our network analyses suggest that wound- and/or hormone-invoked signals exhibit extensive cross-talk and regulate many common reprogramming-associated genes via multilayered regulatory cascades. Our data suggest that PLETHORA 3 (PLT3), ENHANCER OF SHOOT REGENERATION 1 (ESR1) and HEAT SHOCK FACTOR B 1 (HSFB1) act as critical nodes that have many overlapping targets and potentially connect upstream stimuli to downstream developmental decisions. Interestingly, a set of wound-inducible APETALA 2/ETHYLENE RESPONSE FACTORs (AP2/ERFs) appear to regulate these key genes, which, in turn, form feed-forward cascades that control downstream targets associated with callus formation and organ regeneration. In addition, we found another regulatory pathway, mediated by LATERAL ORGAN BOUNDARY/ASYMMETRIC LEAVES 2 (LOB/AS2) TFs, which probably plays a distinct but partially overlapping role alongside the AP2/ERFs in the putative gene regulatory cascades. Taken together, our findings provide the first global picture of the GRN governing plant cell reprogramming, which will serve as a valuable resource for future studies.
PREMISE OF THE STUDY: Autopolyploidy, or whole‐genome duplication, is a recurrent phenomenon in plant evolution. Its existence can be inferred from the presence of massive levels of genetic redundancy revealed by comparative plant phylogenomics. Whole‐genome duplication is theoretically associated with evolutionary novelties such as the development of new metabolic reactions and therefore contributes to the evolution of new plant metabolic profiles. However, very little is yet known about the impact of autopolyploidy on the metabolism of recently formed autopolyploids. This study provides a better understanding of the relevance of this evolutionary process. METHODS: In this study, we compared the metabolic profiles of wild diploids, wild autotetraploids, and artificial autotetraploids of Arabidopsis thaliana using targeted ultra‐high performance liquid chromatography‐triple quadrupole‐ mass spectrometry (UPLC‐QqQ‐MS) metabolomics. KEY RESULTS: We found that wild and artificial A . thaliana autotetraploids display different metabolic profiles. Furthermore, wild autotetraploids display unique metabolic profiles associated with their geographic origin. CONCLUSIONS: Autopolyploidy might help plants adapt to challenging environmental conditions by allowing the evolution of novel metabolic profiles not present in the parental diploids. We elaborate on the causes and consequences leading to these distinct profiles.
Wounding is a primary trigger of organ regeneration, but how wound stress reactivates cell proliferation and promotes cellular reprogramming remains elusive. In this study, we combined transcriptome analysis with quantitative hormonal analysis to investigate how wounding induces callus formation in Arabidopsis (Arabidopsis thaliana). Our time course RNA-seq analysis revealed that wounding induces dynamic transcriptional changes, starting from rapid stress responses followed by the activation of metabolic processes and protein synthesis and subsequent activation of cell cycle regulators. Gene ontology analyses further uncovered that wounding modifies the expression of hormone biosynthesis and response genes, and quantitative analysis of endogenous plant hormones revealed accumulation of cytokinin prior to callus formation. Mutants defective in cytokinin synthesis and signaling display reduced efficiency in callus formation, indicating that de novo synthesis of cytokinin is critical for wound-induced callus formation. We further demonstrate that type-B ARABIDOPSIS RESPONSE REGULATOR-mediated cytokinin signaling regulates the expression of CYCLIN D3;1 (CYCD3;1) and that mutations in CYCD3;1 and its homologs CYCD3;2 and 3 cause defects in callus formation. In addition to these hormone-mediated changes, our transcriptome data uncovered that wounding activates multiple developmental regulators, and we found novel roles of ETHYLENE RESPONSE FACTOR 115 and PLETHORA3 (PLT3), PLT5, and PLT7 in callus generation. All together, these results provide novel mechanistic insights into how wounding reactivates cell proliferation during callus formation.
Abstract Plant somatic cells reprogram and regenerate new tissues or organs when they are severely damaged. These physiological processes are associated with dynamic transcriptional responses but how chromatin-based regulation contributes to wound-induced gene expression changes and subsequent cellular reprogramming remains unknown. In this study we investigate the temporal dynamics of the histone modifications H3K9/14ac, H3K27ac, H3K4me3, H3K27me3, and H3K36me3, and analyze their correlation with gene expression at early time points after wounding. We show that a majority of the few thousand genes rapidly induced by wounding are marked with H3K9/14ac and H3K27ac before and/or shortly after wounding, and these include key wound-inducible reprogramming genes such as WIND1 , ERF113/RAP2.6 L and LBD16 . Our data further demonstrate that inhibition of GNAT-MYST-mediated histone acetylation strongly blocks wound-induced transcriptional activation as well as callus formation at wound sites. This study thus uncovered a key epigenetic mechanism that underlies wound-induced cellular reprogramming in plants.
Plants modify organ growth and tune morphogenesis in response to various endogenous and environmental cues. At the cellular level, organ growth is often adjusted by alterations in cell growth, but the molecular mechanisms underlying this control remain poorly understood. In this study, we identify the DNA BINDING WITH ONE FINGER (DOF)-type transcription regulator OBF BINDING PROTEIN4 (OBP4) as a repressor of cell growth. Ectopic expression of OBP4 in Arabidopsis (Arabidopsis thaliana) inhibits cell growth, resulting in severe dwarfism and the repression of genes involved in the regulation of water transport, root hair development, and stress responses. Among the basic helix-loop-helix transcription factors known to control root hair growth, OBP4 binds the ROOT HAIR DEFECTIVE6-LIKE2 (RSL2) promoter to repress its expression. The accumulation of OBP4 proteins is detected in expanding root epidermal cells, and its expression level is increased by the application of abscisic acid (ABA) at concentrations sufficient to inhibit root hair growth. ABA-dependent induction of OBP4 is associated with the reduced expression of RSL2 Furthermore, ectopic expression of OBP4 or loss of RSL2 function results in ABA-insensitive root hair growth. Taken together, our results suggest that OBP4-mediated transcriptional repression of RSL2 contributes to the ABA-dependent inhibition of root hair growth in Arabidopsis.
Abstract Low temperature inhibits the growth of maize (Zea mays) seedlings and limits yield under field conditions. To study the mechanism of cold-induced growth retardation, we exposed maize B73 seedlings to low night temperature (25°C /4°C, day/night) from germination until the completion of leaf 4 expansion. This treatment resulted in a 20% reduction in final leaf size compared to control conditions (25°C/18°C, day/night). A kinematic analysis of leaf growth rates in control and cold-treated leaves during daytime showed that cold nights affected both cell cycle time (+65%) and cell production (−22%). In contrast, the size of mature epidermal cells was unaffected. To analyze the effect on cell cycle progression at the molecular level, we identified through a bioinformatics approach a set of 43 cell cycle genes and analyzed their expression in proliferating, expanding, and mature cells of leaves exposed to either control or cold nights. This analysis showed that: (1) the majority of cell cycle genes had a consistent proliferation-specific expression pattern; and (2) the increased cell cycle time in the basal meristem of leaves exposed to cold nights was associated with differential expression of cell cycle inhibitors and with the concomitant down-regulation of positive regulators of cell division.
Chilling-stress tolerance is a prerequisite for maize production under cool climatic conditions. The main goal of this study was to evaluate the Central European dent and flint pools for chilling tolerance during heterotrophic and early autotrophic growth in field trials and growth chamber experiments.Five European flint and five dent inbreds and their 25 factorial crosses were evaluated in six natural environments, where chilling occurred, for chlorophyll concentration and plant height at the three-leaf stage, and plant height and fresh weight at the seven-leaf stage. In growth chambers, leaf 3 growth was analysed under cold and control conditions.Comparing the field and growth chamber data, the strongest association was found between leaf elongation rate during cold nights and plant height at the three-leaf stage, with a weaker association with the seven-leaf stage. In the field, moderate correlations were observed between plant height at the three-leaf stage, and plant height and fresh weight at the seven-leaf stage, respectively. Furthermore, mid-parent and hybrid performance were only moderately correlated.The results suggest that heterotrophic and early autotrophic growth stages are controlled by different genetic factors or that maternal effects play a role. In addition, the findings showed that mid-parent performance is a poor predictor of hybrid performance. Consequently, test cross performance should be the target in quantitiative trait locus (QTL) mapping studies with the final goal of establishing marker-assisted breeding programmes for chilling-tolerant hybrids.
Many plants are able to regenerate upon cutting, and this process can be enhanced in vitro by incubating explants on hormone-supplemented media. While such protocols have been used for decades, little is known about the molecular details of how incubation conditions influence their efficiency. In this study, we find that warm temperature promotes both callus formation and shoot regeneration in Arabidopsis thaliana. We show that such an increase in shoot regenerative capacity at higher temperatures correlates with the enhanced expression of several regeneration-associated genes, such as CUP-SHAPED COTYLEDON 1 (CUC1) encoding a transcription factor involved in shoot meristem formation and YUCCAs (YUCs) encoding auxin biosynthesis enzymes. ChIP-sequencing analyses further reveal that histone variant H2A.Z is enriched on these loci at 17°C, while its occupancy is reduced by an increase in ambient temperature to 27°C. Moreover, we provide genetic evidence to demonstrate that H2A.Z acts as a repressor of de novo shoot organogenesis since H2A.Z-depleted mutants display enhanced shoot regeneration. This study thus uncovers a new chromatin-based mechanism that influences hormone-induced regeneration and additionally highlights incubation temperature as a key parameter for optimizing in vitro tissue culture.