Increased levels of lactate, an end-product of glycolysis, have been proposed as a potential surrogate marker for metabolic changes during neuronal excitation. These changes in lactate levels can result in decreased brain pH, which has been implicated in patients with various neuropsychiatric disorders. We previously demonstrated that such alterations are commonly observed in five mouse models of schizophrenia, bipolar disorder, and autism, suggesting a shared endophenotype among these disorders rather than mere artifacts due to medications or agonal state. However, there is still limited research on this phenomenon in animal models, leaving its generality across other disease animal models uncertain. Moreover, the association between changes in brain lactate levels and specific behavioral abnormalities remains unclear. To address these gaps, the International Brain pH Project Consortium investigated brain pH and lactate levels in 109 strains/conditions of 2,294 animals with genetic and other experimental manipulations relevant to neuropsychiatric disorders. Systematic analysis revealed that decreased brain pH and increased lactate levels were common features observed in multiple models of depression, epilepsy, Alzheimer's disease, and some additional schizophrenia models. While certain autism models also exhibited decreased pH and increased lactate levels, others showed the opposite pattern, potentially reflecting subpopulations within the autism spectrum. Furthermore, utilizing large-scale behavioral test battery, a multivariate cross-validated prediction analysis demonstrated that poor working memory performance was predominantly associated with increased brain lactate levels. Importantly, this association was confirmed in an independent cohort of animal models. Collectively, these findings suggest that altered brain pH and lactate levels, which could be attributed to dysregulated excitation/inhibition balance, may serve as transdiagnostic endophenotypes of debilitating neuropsychiatric disorders characterized by cognitive impairment, irrespective of their beneficial or detrimental nature.
Generation of various kinds of trans-mitochondrial mice, mito-mice, each carrying mtDNAs with a different pathogenic mutation, is required for precise investigation of the pathogenesis of mitochondrial diseases. This study used two respiration-deficient mouse cell lines as donors of mtDNAs with possible pathogenic mutations. One cell line expressed 45–50% respiratory activity due to mouse mtDNAs with a T6589C missense mutation in the COI gene (T6589C mtDNA) and the other expressed 40% respiratory activity due to rat (Rattus norvegicus) mtDNAs in mouse cells. By cytoplasmic transfer of these mtDNAs to mouse ES cells, we isolated respiration-deficient ES cells. We obtained chimeric mice and generated their F6 progeny carrying mouse T6589C mtDNAs by its female germ line transmission. They were respiration-deficient and thus could be used as models of mitochondrial diseases caused by point mutations in mtDNA structural genes. However, chimeric mice and mito-mice carrying rat mtDNAs were not obtained, suggesting that significant respiration defects or some deficits induced by rat mtDNAs in mouse ES cells prevented their differentiation to generate mice carrying rat mtDNAs.
A case of 55-year-old male with distal myopathy with rimmed vacuole formation is reported. He first noticed dragging of his legs at the age of forty-three. Two years later, he was evaluated to have muscle wasting and weakness in lower legs. In another ten years, he became unable to stand or walk unaided. On physical examination, proximal limb muscles were more severely affected than distal limb muscles. Notably, muscle strength of the quadriceps femoris muscles were weak (MRC Scale 3/5), compared to hamstrings, tibialis anterior muscle and gastrocnemius muscle (4/5). Serum creatine kinase, electromyography, nerve conduction velocities were all compatible with this diagnosis. A computed tomography of the musculoskeletal system was consistent with physical findings. Muscle biopsy revealed many fibers with typical rimmed vacuoles (approximately 6% of fibers). Additionally, small amount of ragged-red fibers (0.5%) was noted. Histochemical reaction showed a focal deficiency of cytochrome c oxidase. This case suggests that during the longstanding course of the illness, proximal limb muscles may be more severely affected, and quadriceps femoris muscle may be predominantly involved.
Neurons have high plasticity in developmental and juvenile stages that decreases in adulthood. Mitochondrial dynamics are highly important in neurons to maintain normal function. To compare dependency on mitochondrial dynamics in juvenile and adult stages, we generated a mouse model capable of selective timing of the expression of a mutant of the mitochondrial fusion factor Mitofusin 2 (MFN2). Mutant expression in the juvenile stage had lethal effects. Contrastingly, abnormalities did not manifest until 150 d after mutant expression during adulthood. After this silent 150 d period, progressive neurodegeneration, abnormal behaviors, and learning and memory deficits similar to those seen in human neurodegenerative diseases were observed. This indicates that abnormal neuronal mitochondrial dynamics seriously affect survival during early life stages and can also significantly damage brain function after maturation. Our findings highlight the need to consider the timing of disease onset in mimicking human neurodegenerative diseases. SIGNIFICANCE STATEMENT To compare the dependency on mitochondrial dynamics in neurons in juvenile and adult stages, we generated a mouse model expressing a mutant of the mitochondrial fusion factor MFN2 in an arbitrary timing. Juvenile expression of the mutant showed acute and severe phenotypes and had lethal effects; however, post-adult expression induced delayed but progressive phenotypes resembling those found in human neurodegenerative diseases. Our results indicate that abnormal neuronal mitochondrial dynamics seriously affect survival during early life stages and can also significantly damage brain function after maturation. This strongly suggests that the timing of expression should be considered when establishing an animal model that closely resembles human neurodegenerative diseases.