The Australian painted apple moth (Teia anartoides) has been the target of an eradication programme in Auckland For the first time in New Zealand the sterile insect technique has been deployed using males moths irradiated as pupae at 100 Gy Sterilisation of males has a fitness cost which was assessed in terms of longevity and competitive fitness Irradiation at 100 Gy had no effect on longevity of male painted apple moths However when released in separate groups in the flight tunnel irradiated males were less likely to reach calling females than untreated males (Plt;0001) When single irradiated (100 Gy) males and untreated males were released together as a pair irradiated males also showed lower arrival to females (Plt;0005) However once the males successfully located the females there were no significant differences between the controls and the irradiated males in the total time spent for mate location mounting attempts and mating duration
Mammalian DNA extracted from the invertebrates, especially blowfly-derived DNA, has been suggested as a useful tool to complement traditional field methods for terrestrial mammal monitoring. However, the accuracy of the estimated location of the target mammal detected from blowfly-derived DNA is largely dependent on the knowledge of blowflies' dispersal range. Presently, published data on adult blowfly dispersal capabilities remain scarce and mostly limited to temperate and subtropical regions, with no published report on the adult blowfly dispersal range in the Tropics. We seek to determine the blowfly flight range and dispersal activity in a tropical plantation in Malaysia by mark-release-recapture of approximately 3000 wild blowflies by use of rotten fish-baited traps for nine consecutive days. Out of the 3000 marked Chrysomya spp., only 1.5% (43) were recaptured during the 9-day sampling period. The majority of the blowflies (79%) were recaptured 1 km from the release point, while 20.9% were caught about 2-3 km from the release point. One individual blowfly travelled as far as 3 km and before being recaptured, which was the maximum dispersal distance recorded in this study. This result suggests that the estimated locations of the mammals detected from blowfly-derived iDNA is likely to be within 1-2 km radius from the origin of the blowfly sampling location. However, a more accurate estimated distance between the target mammal and the blowfly sampling location requires further investigation due to various factors, such as blowfly species, wind speed and direction that may potentially affect the blowfly dispersal activities. This study contributes further understanding on the development of a blowfly-derived DNA method as a mammalian monitoring tool in the tropical forests.
Bactrocera papayae Drew & Hancock, Bactrocera philippinensis Drew & Hancock, Bactrocera carambolae Drew & Hancock, and Bactrocera invadens Drew, Tsuruta & White are four horticultural pest tephritid fruit fly species that are highly similar, morphologically and genetically, to the destructive pest, the Oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). This similarity has rendered the discovery of reliable diagnostic characters problematic, which, in view of the economic importance of these taxa and the international trade implications, has resulted in ongoing difficulties for many areas of plant protection and food security. Consequently, a major international collaborative and integrated multidisciplinary research effort was initiated in 2009 to build upon existing literature with the specific aim of resolving biological species limits among B. papayae, B. philippinensis, B. carambolae, B. invadens and B. dorsalis to overcome constraints to pest management and international trade. Bactrocera philippinensis has recently been synonymized with B. papayae as a result of this initiative and this review corroborates that finding; however, the other names remain in use. While consistent characters have been found to reliably distinguish B. carambolae from B. dorsalis, B. invadens and B. papayae, no such characters have been found to differentiate the latter three putative species. We conclude that B. carambolae is a valid species and that the remaining taxa, B. dorsalis, B. invadens and B. papayae, represent the same species. Thus, we consider B. dorsalis (Hendel) as the senior synonym of B. papayae Drew and Hancock syn.n. and B. invadens Drew, Tsuruta & White syn.n. A redescription of B. dorsalis is provided. Given the agricultural importance of B. dorsalis, this taxonomic decision will have significant global plant biosecurity implications, affecting pest management, quarantine, international trade, postharvest treatment and basic research. Throughout the paper, we emphasize the value of independent and multidisciplinary tools in delimiting species, particularly in complicated cases involving morphologically cryptic taxa.
An FAO/IAEA-sponsored coordinated research project on integrative taxonomy, involving close to 50 researchers from at least 20 countries, culminated in a significant breakthrough in the recognition that four major pest species, Bactrocera dorsalis, B. philippinensis, B. papayae and B. invadens, belong to the same biological species, B. dorsalis. The successful conclusion of this initiative is expected to significantly facilitate global agricultural trade, primarily through the lifting of quarantine restrictions that have long affected many countries, especially those in regions such as Asia and Africa that have large potential for fresh fruit and vegetable commodity exports. This work stems from two taxonomic studies: a revision in 1994 that significantly increased the number of described species in the Bactrocera dorsalis species complex; and the description in 2005 of B. invadens, then newly incursive in Africa. While taxonomically valid species, many biologists considered that these were different names for one biological species. Many disagreements confounded attempts to develop a solution for resolving this taxonomic issue, before the FAO/IAEA project commenced. Crucial to understanding the success of that initiative is an accounting of the historical events and perspectives leading up to the international, multidisciplinary collaborative efforts that successfully achieved the final synonymization. This review highlights the 21 year journey taken to achieve this outcome.