Plant grafting is an important technique for horticultural and silvicultural production. However, many rootstock plants suffer from undesirable lateral bud outgrowth, low grafting success rates or poor rooting. Here, we used a root-predominant gene promoter (SbUGT) to drive the expression of a tryptophan-2-monooxygenase gene (iaaM) from Agrobacterium tumefaciens to increase auxin levels in tobacco. The transgenic plants, when used as a rootstock, displayed inhibited lateral bud outgrowth, enhanced grafting success rate and improved root initiation. However, root elongation and biomass of SbUGT::iaaM transgenic plants were reduced compared to those of wild-type plants. In contrast, when we used this same promoter to drive CKX (a cytokinin degradation gene) expression, the transgenic tobacco plants displayed enhanced root elongation and biomass. We then made crosses between the SbUGT::CKX and SbUGT::iaaM transgenic plants. We observed that overexpression of the CKX gene neutralized the negative effects of auxin overproduction on root elongation. Also, the simultaneous expression of both the iaaM and CKX genes in rootstock did not disrupt normal growth and developmental patterns in wild-type scions. Our results demonstrate that expression of both the iaaM and CKX genes predominantly in roots of rootstock inhibits lateral bud release from rootstock, improves grafting success rates and enhances root initiation and biomass.
Mowing frequencies are associated with differences in disease susceptibility of turfgrasses, but how hormones respond to mowing practices are not fully understood. Two independent growth chamber experiments were conducted to determine how leaf trimming and heat stress play a role in modulating endogenous hormones within creeping bentgrass ( Agrostis stolonifera ) leaf tissues. The study also aimed to evaluate whether there are hormone changes at 0, 15, and 30 minutes after leaf trimming (wounding). The effects of trimming and temperature on sod plugs of creeping bentgrass ‘Penncross’ and ‘Penn-G2’ were investigated under optimal conditions (23/20 °C day/night) and heat stress (30/25 °C day/night). Plants were 1) untrimmed and sampled by plucking at the leaf base, 2) untrimmed and sampled by cutting at 0, 15, and 30 minutes, or 3) trimmed once every 3 days. Salicylic acid (SA), jasmonic acid (JA), abscisic acid (ABA), and indole-3-acetic acid (IAA) were generally greater in untrimmed plants compared with plants trimmed every 3 days under high temperature conditions. Zeatin riboside (ZR) was lower in untrimmed plants compared with plants trimmed every 3 days. JA and gibberellic acid (GA) accumulated to greater levels in the plants after 15 and 30 minutes of sampling. Polyamines (PAs) exhibited a transient increase in putrescine (Put) due to wounding. The results demonstrate the importance of research practices that consider the timing of sampling turfgrass plants for hormone analysis, help elucidate why mowing practices may play a role in stress susceptibility, and may be applicable to various studies related to leaf wounding.
Polyamines (PAs), spermine (Spm), and spermidine (Spd) may enhance the abiotic stress tolerance and growth of creeping bentgrass ( Agrostis stolonifera ). Growth chamber studies were conducted to investigate the effect of PA application on the physiological response and hormone content in creeping bentgrass ‘Penn-G2’ under drought. Spm (1 m m ) and Spd (5 m m ) were applied exogenously under drought or well-watered conditions. PA-treated plants maintained significantly higher turf quality (TQ), relative water content (RWC), photochemical efficiency, and membrane health while maintaining lower canopy temperature. Spm at the 1-m m rate had a 2.46-fold higher osmotic adjustment (OA) at 10 d compared with control plants. A greater content of gibberellic acid (GA) isoforms (GA1, GA4, and GA20) were observed compared with controls during both studies for PA-treated plants under drought. After 7 days of drought stress in Expt.1, GA1 levels were 3.26 higher for Spm 1-m m -treated plants compared with drought controls. GA4 contents were 69% and 65% higher compared with drought-stressed-untreated plants for Spd 5-m m application after 9 and 11 days. Higher levels of GA20 were observed at 10 days (Spd 5 m m , 108.9% higher) due to PA treatment compared with drought controls. In addition to differential regulation of GA isoforms, we observed enhanced abscisic acid (ABA) due to PA application; however, not on a consistent basis. This study showed that PA application may play a role in GA1, GA4, and ABA accumulation in creeping bentgrass ‘Penn G-2’ under drought stress.
Abstract Leaf elongation rate (LER) is an important factor controlling plant growth and productivity. The objective of this study was to determine whether genetic variation in LER for a fast-growing (‘K-31’), and a dwarf cultivar (‘Bonsai’) of tall fescue ( Festuca arundinacea ) and gibberellic acid (GA) regulation of LER were associated with differential expression of cell-expansion genes. Plants were treated with GA 3 , trinexapac-ethyl (TE) (GA inhibitor), or water (untreated control) in a hydroponic system. LER of ‘K-31’ was 63% greater than that of ‘Bonsai’, which corresponded with 32% higher endogenous GA 4 content in leaf and greater cell elongation and production rates under the untreated control condition. Exogenous application of GA 3 significantly enhanced LER while TE treatment inhibited leaf elongation due to GA 3 -stimulation or TE-inhibition of cell elongation and production rate in leaves for both cultivars. Real-time quantitative polymerase chain reaction analysis revealed that three α-expansins, one β-expansin, and three xyloglucan endotransglycosylase (XET) genes were associated with GA-stimulation of leaf elongation, of which, the differential expression of EXPA4 and EXPA7 was related to the genotypic variation in LER of two cultivars. Those differentially-expressed expansin and XET genes could play major roles in genetic variation and GA-regulated leaf elongation in tall fescue.
Creeping bentgrass ( Agrostis stolonifera ) is a desirable turfgrass putting green species that is susceptible to drought stress. Planting drought-resistant creeping bentgrass will enhance the resilience of golf turf surfaces, lower required resource inputs, and reduce the environmental impact of golf courses. Creeping bentgrass cultivar performance data during drought stress are needed for informed selection of appropriate cultivars. We evaluated the drought performance of 19 cultivars of creeping bentgrass and found that newer creeping bentgrass cultivars such as Pure Distinction and others exhibited superior drought performance compared with older cultivars such as Penncross and L93 based on turf quality, photochemical yield, and leaf relative water content. The results of this work should be used to aid in the selection of drought-resistant creeping bentgrass cultivars for turfgrass practitioners.
Perennial ryegrass ( Lolium perenne ) is an important forage and turfgrass species that is sensitive to drought stress. The objective of this study was to investigate whether gamma aminobutyric acid (GABA) may play a role in promoting drought tolerance in grass species. GABA was exogenously applied as a foliar spray at the rate of 50 or 70 m m to perennial ryegrass ‘CSI’ under well-watered or drought-stressed conditions in a controlled-environment growth chamber. The effect of GABA on the growth physiology, drought stress response, antioxidant activity, and lipid peroxidation of perennial ryegrass exposed to drought stress was measured. GABA-treated perennial ryegrass exposed to drought stress had higher relative water content (RWC), turf quality, and peroxidase activity and lower wilt rating, canopy temperature depression, electrolyte leakage, and lipid peroxidation compared with untreated plants. GABA application had no significant effect on the activity of superoxide dismutase and catalase under well-watered and drought conditions. GABA application at 50 m m was found to be more effective in alleviating drought stress damage in perennial ryegrass. The results from this study suggest that GABA mitigated drought stress damage in perennial ryegrass by maintaining higher RWC and membrane stability.
Salinity stress is becoming more prevalent in turfgrass management with the increasing use of recycled water for irrigation. Creeping bentgrass ( Agrostis stolonifera ) is a cool-season turfgrass species that contains significant cultivar variation in salt stress tolerance, but the mechanism related to this cultivar variation is not well understood. Our objectives were to determine whether differential hormone content could play a role in cultivar variation of salt responses and to evaluate whether cell viability assays using dye techniques could differentiate salt stress damage levels in turfgrass species. Therefore, a growth chamber study with potted plants was conducted to evaluate salt ion concentrations, physiological responses, and hormone analysis [abscisic acid (ABA), indole-3-acetic acid (IAA), jasmonic acid (JA), salicylic acid (SA), zeatin riboside (ZR), and ethylene] at 4, 8, and 12 dS·m −1 in relatively salt-tolerant ‘Mariner’ compared with salt-sensitive ‘Penncross’ creeping bentgrass. A hydroponics-based growth chamber study was performed for evaluation of whether dead-cell stains coupled with image analysis could be a quick method for indicating cell viability variation between cultivars. Greater salt tolerance was evident in ‘Mariner’ at 12 dS·m −1 , which showed significantly lower electrolyte leakage, higher leaf relative water content (RWC), osmotic potential, photochemical efficiency, and photochemical yield compared with ‘Penncross’. A higher K + and lower Na + content was maintained in leaves of ‘Mariner’ compared with ‘Penncross’ while roots of ‘Mariner’ maintained higher Ca 2+ content under stressed and nonstressed conditions. Phytohormone levels showed a decline in salt-stressed roots compared with nonstressed plants but ‘Mariner’ roots were able to maintain levels higher than ‘Penncross’. ‘Mariner’ leaves showed an increased accumulation of ABA, JA, SA, and ZR while roots maintained higher IAA and SA compared with ‘Penncross’. The results suggest that ‘Mariner’ was able to mitigate salt stress by better ion regulation and differential regulation of hormones compared with ‘Penncross’. ‘Mariner’ leaves and roots showed significantly lower dead cells compared with ‘Penncross’ under salt stress. The results suggest that staining for cell viability could be a useful technique for studying turfgrass stress or other cellular responses.
When subjected to shade, plants undergo rapid shoot elongation, which often makes them more prone to disease and mechanical damage. Shade-tolerant plants can be difficult to breed; however, they offer a substantial benefit over other varieties in low-light areas. Although perennial ryegrass (Lolium perenne L.) is a popular species of turf grasses because of their good appearance and fast establishment, the plant normally does not perform well under shade conditions. It has been reported that, in turfgrass, induced dwarfism can enhance shade tolerance. Here we describe a two-step procedure for isolating shade tolerant mutants of perennial ryegrass by first screening for dominant dwarf mutants, and then screening dwarf plants for shade tolerance. The two-step screening process to isolate shade tolerant mutants can be done efficiently with limited space at early seedling stages, which enables quick and efficient isolation of shade tolerant mutants, and thus facilitates development of shade tolerant new cultivars of turfgrasses. Using the method, we isolated 136 dwarf mutants from 300,000 mutagenized seeds, with 65 being shade tolerant (0.022%). When screened directly for shade tolerance, we recovered only four mutants from a population of 150,000 (0.003%) mutagenized seeds. One shade tolerant mutant, shadow-1, was characterized in detail. In addition to dwarfism, shadow-1 and its sexual progeny displayed high degrees of tolerance to both natural and artificial shade. We showed that endogenous gibberellin (GA) content in shadow-1 was higher than wild-type controls, and shadow-1 was also partially GA insensitive. Our novel, simple and effective two-step screening method should be applicable to breeding shade tolerant cultivars of turfgrasses, ground covers, and other economically important crop plants that can be used under canopies of existing vegetation to increase productivity per unit area of land.