Dendritic calcium signaling is central to neural plasticity mechanisms that allow animals to adapt to the environment. Intracellular calcium release (ICR) from the endoplasmic reticulum has long been thought to shape these mechanisms. However, ICR has not been investigated in mammalian neurons in vivo. We combined electroporation of single CA1 pyramidal neurons, simultaneous imaging of dendritic and somatic activity during spatial navigation, optogenetic place field induction, and acute genetic augmentation of ICR cytosolic impact to reveal that ICR supports the establishment of dendritic feature selectivity and shapes integrative properties determining output-level receptive fields. This role for ICR was more prominent in apical than in basal dendrites. Thus, ICR cooperates with circuit-level architecture in vivo to promote the emergence of behaviorally relevant plasticity in a compartment-specific manner.
The Zika virus (ZIKV) has two lineages, Asian and African, and their impact on developing brains has not been compared. Dengue virus (DENV) is a close family member of ZIKV and co-circulates with ZIKV. Here we performed intracerebral inoculation of embryonic mouse brains with dengue virus 2 (DENV2), and found that DENV2 is sufficient to cause smaller brain size due to increased cell death in neural progenitor cells (NPCs) and neurons. Compared to the currently circulating Asian lineage of ZIKV (MEX1-44), DENV2 grows slower, causes less neuronal death, and fails to cause postnatal animal death. Surprisingly, our side-by-side comparison uncovered that African ZIKV isolate (MR-766) is more potent in causing brain damage and postnatal lethality than MEX1-44. In comparison to MEX1-44, MR-766 grows faster in NPCs and in the developing brain, and causes more pronounced cell death in NPCs and neurons, resulting in more severe neuronal loss. Together, these results reveal that DENV2 is sufficient to cause smaller brain sizes, and suggest that the ZIKV African lineage is more virulent and causes more severe brain damage than the Asian lineage.
Zika virus (ZIKV) infection of pregnant women can result in fetal brain abnormalities. It has been established that ZIKV disrupts neural progenitor cells (NPCs) and leads to embryonic microcephaly. However, the fate of other cell types in the developing brain and their contributions to ZIKV-associated brain abnormalities remain largely unknown. Using intracerebral inoculation of embryonic mouse brains, we found that ZIKV infection leads to postnatal growth restriction including microcephaly. In addition to cell cycle arrest and apoptosis of NPCs, ZIKV infection causes massive neuronal death and axonal rarefaction, which phenocopy fetal brain abnormalities in humans. Importantly, ZIKV infection leads to abnormal vascular density and diameter in the developing brain, resulting in a leaky blood-brain barrier (BBB). Massive neuronal death and BBB leakage indicate brain damage, which is further supported by extensive microglial activation and astrogliosis in virally infected brains. Global gene analyses reveal dysregulation of genes associated with immune responses in virus-infected brains. Thus, our data suggest that ZIKV triggers a strong immune response and disrupts neurovascular development, resulting in postnatal microcephaly with extensive brain damage.
Individuals with the 22q11.2 deletion syndrome, one of the strongest genetic risk factors for schizophrenia, demonstrate cognitive impairments including episodic memory dysfunction. Place cell activity of excitatory pyramidal neurons in the hippocampus supporting episodic memory are impaired in a mouse model for the 22q11.2 deletion ( Df(16)A +/- ). While excitatory dynamics are under tight inhibitory control by multiple subtypes of GABAergic interneurons, previous studies have predominantly focused on a single subtype of PV-expressing interneurons; there have not yet been studies describing the functional relationships between molecularly identified inhibitory types in Df(16)A +/- mice. Here, we examined interneuron subtype-specific activity dynamics in the dorsal hippocampal area CA1 of Df(16)A +/- mice during random foraging and spatial reward learning tasks. Capitalizing on 3D acousto-optical deflector two-photon microscopy with post hoc immunohistochemical identification, we found that multiple interneuron types exhibit aberrant responses to reward locations and delayed reward enrichment extinction. Df(16)A +/- inhibitory interneurons also carry markedly reduced spatial information in a subtype-dependent manner. We observed task-dependent changes in the correlation structure and coactivity among multiple GABAergic subtypes, suggesting a broadly disorganized microcircuit functionality in mutant mice. Overall, we identify widespread and heterogeneous subtype-specific alterations in interneuron dynamics during spatial reward learning, reflecting impaired flexibility and organization in CA1 inhibitory microcircuits. Our study provides critical insights into how schizophrenia-risk mutations affect local-circuit interactions among diverse cell types in the mouse hippocampus during learning and spatial navigation.
Neural progenitor cells (NPCs) undergo rapid proliferation during neurulation. This rapid growth generates a high demand for mRNA translation in a timing-dependent manner, but its underlying mechanism remains poorly understood. Lin28 is an RNA-binding protein with two paralogs, Lin28a and Lin28b, in mammals. Mice with Lin28b deletion exhibit no developmental defects, whereas we previously reported that Lin28a deletion led to microcephaly. Here we found that Lin28a/b double knockout (dKO) mice displayed neural tube defects (NTDs) coupled with reduced proliferation and precocious differentiation of NPCs. Using ribosomal protein 24 hypomorphic mice (Rpl24Bst/+) as a genetic tool to dampen global protein synthesis, we found that Lin28a−/−;Rpl24Bst/+ compound mutants exhibited NTDs resembling those seen in Lin28a/b dKO mice. Increased NPC numbers and brain sizes in Lin28a-overexpressing mice were rescued by Rpl24Bst/+ heterozygosity. Mechanistically, polysome profiling revealed reduced translation of genes involved in the regulation of cell cycle, ribosome biogenesis, and translation in dKO mutants. Ribosome biogenesis was reduced in dKO and increased in Lin28a-overexpressing NPCs. Therefore, Lin28-mediated promotion of protein synthesis is essential for NPC maintenance and early brain development.
Neural progenitor cells (NPCs) have distinct proliferation capacities at different stages of brain development. Lin28 is an RNA-binding protein with two homologs in mice: Lin28a and Lin28b. Here we show that Lin28a/b are enriched in early NPCs and their expression declines during neural differentiation. Lin28a single-knockout mice show reduced NPC proliferation, enhanced cell cycle exit and a smaller brain, whereas mice lacking both Lin28a alleles and one Lin28b allele display similar but more severe phenotypes. Ectopic expression of Lin28a in mice results in increased NPC proliferation, NPC numbers and brain size. Mechanistically, Lin28a physically and functionally interacts with Imp1 (Igf2bp1) and regulates Igf2-mTOR signaling. The function of Lin28a/b in NPCs could be attributed, at least in part, to the regulation of their mRNA targets that encode Igf1r and Hmga2. Thus, Lin28a and Lin28b have overlapping functions in temporally regulating NPC proliferation during early brain development.
The Zika virus (ZIKV) is a flavivirus currently endemic in North, Central, and South America. It is now established that the ZIKV can cause microcephaly and additional brain abnormalities. However, the mechanism underlying the pathogenesis of ZIKV in the developing brain remains unclear. Intracerebral surgical methods are frequently used in neuroscience research to address questions about both normal and abnormal brain development and brain function. This protocol utilizes classical surgical techniques and describes methods that allow one to model ZIKV-associated human neurological disease in the mouse nervous system. While direct brain inoculation does not model the normal mode of virus transmission, the method allows investigators to ask targeted questions concerning the consequence after ZIKV infection of the developing brain. This protocol describes embryonic, neonatal, and adult stages of intraventricular inoculation of ZIKV. Once mastered, this method can become a straightforward and reproducible technique that only takes a few hours to perform.
Abstract The causal contribution of glial pathology to Huntington disease (HD) has not been heavily explored. To define the contribution of glia to HD, we established human HD glial chimeras by neonatally engrafting immunodeficient mice with mutant huntingtin (mHTT)-expressing human glial progenitor cells (hGPCs), derived from either human embryonic stem cells or mHTT-transduced fetal hGPCs. Here we show that mHTT glia can impart disease phenotype to normal mice, since mice engrafted intrastriatally with mHTT hGPCs exhibit worse motor performance than controls, and striatal neurons in mHTT glial chimeras are hyperexcitable. Conversely, normal glia can ameliorate disease phenotype in transgenic HD mice, as striatal transplantation of normal glia rescues aspects of electrophysiological and behavioural phenotype, restores interstitial potassium homeostasis, slows disease progression and extends survival in R6/2 HD mice. These observations suggest a causal role for glia in HD, and further suggest a cell-based strategy for disease amelioration in this disorder.